Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find all points of discontinuity of f,where f is defined by

f(x)={xx,if x<0 1,if x0f(x) = \begin{cases} \frac {x}{|x|}, & \quad \text{if } x \text{<0}\\\ -1, & \quad \text{if } x {\geq 0} \end{cases}

Answer

f(x)={xx,if x<0 1,if x0f(x) = \begin{cases} \frac {x}{|x|}, & \quad \text{if } x \text{<0}\\\ -1, & \quad \text{if } x {\geq 0} \end{cases}

It is known that, x<0    \implies|x| = -x
Therefore, the given function can be rewritten as
f(x)={xx=xx=1,if x<0 1,if x0f(x) = \begin{cases} \frac {x}{|x|}=\frac {x}{-x}=-1, & \quad \text{if } x \text{<0}\\\ -1, & \quad \text{if } x {\geq 0} \end{cases}
    \impliesf(x) = -1 for all x∈R
Let c be a point on the real number.Then, limxc\lim\limits_{x \to c} f(x) = limxc\lim\limits_{x \to c} (-1) = -1
Also, f(c) = -1 = limxc\lim\limits_{x \to c} f(x)
Therefore ,the given function is a continuous function.

Hence, the given function has no point of discontinuity.