Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find all points of discontinuity of f, where f is defined by

f(x)={x+1,if x1 x2+1,if x<1f(x) = \begin{cases} x+1, & \quad \text{if } x{\geq1}\\\ x^2+1, & \quad \text{if } x \text{<1} \end{cases}

Answer

f(x)={x+1,if x1 x2+1,if x<1f(x) = \begin{cases} x+1, & \quad \text{if } x{\geq1}\\\ x^2+1, & \quad \text{if } x \text{<1} \end{cases}
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:
If c<1, then f(c) = c2+1 and limxc\lim\limits_{x \to c} f(x) = limxc\lim\limits_{x \to c} f(x2+1) = c2+1
limxc\lim\limits_{x \to c} f(x) = f(c)
Therefore, f is continuous at all points x, such that x<1

Case (ii):
If c = 1, then f(c) = f(1) = 1+1 = 2
then the left hand limit of f at x = 1 is,
limx1\lim\limits_{x \to 1^-}f(x) = limx1\lim\limits_{x \to 1^-}(x2+1) = 12+1 =2
The right hand limit of f at x = 1 is,
limx1+\lim\limits_{x \to 1^+} f(x) = limx1+\lim\limits_{x \to 1^+}(x+1) = 1+1 = 2
limx1\lim\limits_{x \to 1} f(x) = f(1)
Therefore,f is continuous at x = 1

** Case(iii):**
Ifc>1, then f(c) = c+1
limxc\lim\limits_{x \to c} f(x) = limxc\lim\limits_{x \to c} (x+1) = c+1
limxc\lim\limits_{x \to c} f(x) = f(c)
Therefore, f is continuous at all points x, such that x>1
Hence,the given function f has no point of discontinuity.