Solveeit Logo

Question

Question: Find a vector \(\overrightarrow{x}\) which is perpendicular to both \(\overrightarrow{A}\) and\(\ove...

Find a vector x\overrightarrow{x} which is perpendicular to both A\overrightarrow{A} andB\overrightarrow{B} but has magnitude equal to that of B\overrightarrow{B}

Rule : Inter change coeff. ofi^\widehat{i} and j^\widehat{j}and change sign of one of the vectors.

A

110(i^+10j^+17k^)\frac{1}{\sqrt{10}}\left( \widehat{i} + 10\widehat{j} + 17\widehat{k} \right)

B

110(i^10j^+17k^)\frac{1}{\sqrt{10}}\left( \widehat{i} - 10\widehat{j} + 17\widehat{k} \right)

C

29390(i^+10j^+17k^)\frac{\sqrt{29}}{\sqrt{390}}\left( \widehat{i} + 10\widehat{j} + 17\widehat{k} \right)

D

29390(i^10j^+17k^)\frac{\sqrt{29}}{\sqrt{390}}\left( \widehat{i} - 10\widehat{j} + 17\widehat{k} \right)

Answer

29390(i^10j^+17k^)\frac{\sqrt{29}}{\sqrt{390}}\left( \widehat{i} - 10\widehat{j} + 17\widehat{k} \right)

Explanation

Solution

A×B=i^j^k^321432\overrightarrow{A} \times \overrightarrow{B} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & - 2 & 1 \\ 4 & 3 & - 2 \end{matrix} \right|

n^=A×BA×B=i^+10j^+17k^390\hat { n } = \frac { \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } } { | \overrightarrow { \mathrm { A } } \times \overrightarrow { \mathrm { B } } | } = \frac { \hat { \mathrm { i } } + 10 \hat { \mathrm { j } } + 17 \hat { \mathrm { k } } } { \sqrt { 390 } } x\overrightarrow{x} = |B|n^\widehat{n} =

29(i^+10j^+17k^)390\frac{\sqrt{29}\left( \widehat{i} + 10\widehat{j} + 17\widehat{k} \right)}{\sqrt{390}}