Solveeit Logo

Question

Question: Find a vector \(\overrightarrow{p}\) such that it is perpendicular to both \(\overrightarrow{a}\) an...

Find a vector p\overrightarrow{p} such that it is perpendicular to both a\overrightarrow{a} and b\overrightarrow{b}, and p.c=18\overrightarrow{p}.\overrightarrow{c}=18, where a=i^+4j^+2k^\overrightarrow{a}=\hat{i}+4\hat{j}+2\hat{k}, b=3i^2j^+7k^\overrightarrow{b}=3\hat{i}-2\hat{j}+7\hat{k} and c=2i^j^+4k^\overrightarrow{c}=2\hat{i}-\hat{j}+4\hat{k}.

Explanation

Solution

We solve this question by finding the vector perpendicular to given two vectors using the formula (a×b)=i^j^k^ a1a2a3 b1b2b3 \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right|. Then we multiply the obtained vector with some constant and consider it as p\overrightarrow{p}. Then we find the dot product of p\overrightarrow{p} and c\overrightarrow{c} using the formula for dot product a.b=a1b1+a2b2+a3b3~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}. Then we can find the value of the constant and substitute it in the value vector p\overrightarrow{p} to find the value of the vector p\overrightarrow{p}.

Complete step by step answer:
For solving this problem, we need to go through the concept of dot product of two vectors.
Dot product of vectors a=a1i^+a2j^+a3k^\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b=b1i^+b2j^+b3k^\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} can be given as,
 a.b=a1b1+a2b2+a3b3~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}
Any vector perpendicular to both a\overrightarrow{a} and b\overrightarrow{b} can be written in the form of k(a×b)k\left( \overrightarrow{a}\times \overrightarrow{b} \right), where k is a constant. While (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) is the cross product of vectors a\overrightarrow{a} and b\overrightarrow{b} can be given as,
(a×b)=i^j^k^ a1a2a3 b1b2b3 \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right|
We are given that a vector p\overrightarrow{p} is perpendicular to both a\overrightarrow{a} and b\overrightarrow{b}, and p.c=18\overrightarrow{p}.\overrightarrow{c}=18.
As p\overrightarrow{p} is perpendicular to both a\overrightarrow{a} and b\overrightarrow{b}, we can write p\overrightarrow{p} as l(a×b)l\left( \overrightarrow{a}\times \overrightarrow{b} \right), where l is some constant.
First let us calculate the value of (a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right).
(a×b)=i^j^k^ 142 327  (a×b)=i^42 27 j^12 37 +k^14 32  (a×b)=i^(28+4)j^(76)+k^(212) (a×b)=32i^j^14k^ \begin{aligned} & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & 4 & 2 \\\ 3 & -2 & 7 \\\ \end{matrix} \right| \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left| \begin{matrix} 4 & 2 \\\ -2 & 7 \\\ \end{matrix} \right|-\hat{j}\left| \begin{matrix} 1 & 2 \\\ 3 & 7 \\\ \end{matrix} \right|+\hat{k}\left| \begin{matrix} 1 & 4 \\\ 3 & -2 \\\ \end{matrix} \right| \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\hat{i}\left( 28+4 \right)-\hat{j}\left( 7-6 \right)+\hat{k}\left( -2-12 \right) \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=32\hat{i}-\hat{j}-14\hat{k} \\\ \end{aligned}
As p\overrightarrow{p} is in the form of l(a×b)l\left( \overrightarrow{a}\times \overrightarrow{b} \right), we can write p\overrightarrow{p} as
p=l(a×b) p=l(32i^j^14k^) p=32li^lj^14lk^ \begin{aligned} & \Rightarrow \overrightarrow{p}=l\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\\ & \Rightarrow \overrightarrow{p}=l\left( 32\hat{i}-\hat{j}-14\hat{k} \right) \\\ & \Rightarrow \overrightarrow{p}=32l\hat{i}-l\hat{j}-14l\hat{k} \\\ \end{aligned}
We are given that p.c=18\overrightarrow{p}.\overrightarrow{c}=18.
So, by using the above formula of dot product of p\overrightarrow{p} and c\overrightarrow{c}, we get

& \Rightarrow \overrightarrow{p}.\overrightarrow{c}=18 \\\ & \Rightarrow ~\left( 32l \right)\left( 2 \right)+\left( -l \right)\left( -1 \right)+\left( -14l \right)\left( 4 \right)=18 \\\ & \Rightarrow ~64l+l-56l=18 \\\ & \Rightarrow ~9l=18 \\\ & \Rightarrow ~l=\dfrac{18}{9} \\\ & \Rightarrow ~l=2 \\\ \end{aligned}$$ Then by substituting the value of $l$ in $\overrightarrow{p}$, we get $\begin{aligned} & \Rightarrow \overrightarrow{p}=32\left( 2 \right)\hat{i}-\left( 2 \right)\hat{j}-14\left( 2 \right)\hat{k} \\\ & \Rightarrow \overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k} \\\ \end{aligned}$ So, the value of vector $\overrightarrow{p}$ is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$. Hence the answer is $\overrightarrow{p}=64\hat{i}-2\hat{j}-28\hat{k}$. **Note:** The major mistake that one makes while solving this problem is exchanging the formulas of cross product and dot product for one another like considering $\overrightarrow{a}.\overrightarrow{b}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right|$ and $$~\overrightarrow{a}\times \overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}$$, which is wrong. So, one needs to remember the formulas for dot product and cross product and use them correctly.