Solveeit Logo

Question

Question: Find a vector \(\overrightarrow{c}\), such that \(\overrightarrow{a}\times \overrightarrow{c}=\overr...

Find a vector c\overrightarrow{c}, such that a×c=b\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b} and a.c=3\overrightarrow{a}.\overrightarrow{c}=3 if a=i^+j^+k^\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k} and b=j^k^\overrightarrow{b}=\hat{j}-\hat{k}.

Explanation

Solution

We start solving this problem by going through the concept of dot product, cross product and vector triple product. First, we apply the cross product to a×c\overrightarrow{a}\times \overrightarrow{c} and b\overrightarrow{b}, and we use the vector triple product formula a×(b×c)=(a.c)b(a.b)c\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}. Then, we find the cross product of a\overrightarrow{a} and b\overrightarrow{b}, and equate them. Then we solve the obtained equation to find the vector c\overrightarrow{c}.

Complete step by step answer:
For solving this problem, we need to go through the concept of dot product and the cross product of two vectors and also vector triple product.
Dot product of vectors a=a1i^+a2j^+a3k^\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k} and b=b1i^+b2j^+b3k^\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k} can be given as,
 a.b=a1b1+a2b2+a3b3~\overrightarrow{a}.\overrightarrow{b}={{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}
(a×b)\left( \overrightarrow{a}\times \overrightarrow{b} \right) is the cross product of vectors a\overrightarrow{a} and b\overrightarrow{b}, and can be given as,
(a×b)=i^j^k^ a1a2a3 b1b2b3 \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ \end{matrix} \right|
The vector triple product of three vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} is given by
a×(b×c)=(a.c)b(a.b)c\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{a}.\overrightarrow{b} \right)\overrightarrow{c}
We are given that a×c=b\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{b} and a.c=3\overrightarrow{a}.\overrightarrow{c}=3.
Now let us consider, a×(a×c)\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right). Then we get,
a×(a×c)=a×b............(1)\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\overrightarrow{a}\times \overrightarrow{b}............\left( 1 \right)
Using the triple vector product, we get that
a×(a×c)=(a.c)a(a.a)c\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{c}
Now using the formula for dot product and as a.c=3\overrightarrow{a}.\overrightarrow{c}=3, we get
a×(a×c)=3a(1(1)+1(1)+1(1))c a×(a×c)=3a3c..............(2) \begin{aligned} & \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-\left( 1\left( 1 \right)+1\left( 1 \right)+1\left( 1 \right) \right)\overrightarrow{c} \\\ & \Rightarrow \overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{c} \right)=3\overrightarrow{a}-3\overrightarrow{c}..............\left( 2 \right) \\\ \end{aligned}
Now let us find the value of a×b\overrightarrow{a}\times \overrightarrow{b}.
Using the formula for cross product we get,
(a×b)=i^j^k^ 111 011  (a×b)=11 11 i^11 01 j^+11 01 k^ (a×b)=(11)i^(10)j^+(10)k^ (a×b)=2i^+j^+k^..............(3) \begin{aligned} & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & 1 & 1 \\\ 0 & 1 & -1 \\\ \end{matrix} \right| \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left| \begin{matrix} 1 & 1 \\\ 1 & -1 \\\ \end{matrix} \right|\hat{i}-\left| \begin{matrix} 1 & 1 \\\ 0 & -1 \\\ \end{matrix} \right|\hat{j}+\left| \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right|\hat{k} \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\left( -1-1 \right)\hat{i}-\left( -1-0 \right)\hat{j}+\left( 1-0 \right)\hat{k} \\\ & \Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)=-2\hat{i}+\hat{j}+\hat{k}..............\left( 3 \right) \\\ \end{aligned}
Using equations (2) and (3) and substituting them in equation (1), we get
3a3c=2i^+j^+k^\Rightarrow 3\overrightarrow{a}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k}
Now, let us substitute the vector a\overrightarrow{a} in it, then we get
3(i^+j^+k^)3c=2i^+j^+k^ 3i^+3j^+3k^3c=2i^+j^+k^ 3c=3i^+3j^+3k^(2i^+j^+k^) 3c=3i^+3j^+3k^+2i^j^k^ 3c=5i^+2j^+2k^ c=53i^+23j^+23k^ \begin{aligned} & \Rightarrow 3\left( \hat{i}+\hat{j}+\hat{k} \right)-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\\ & \Rightarrow 3\hat{i}+3\hat{j}+3\hat{k}-3\overrightarrow{c}=-2\hat{i}+\hat{j}+\hat{k} \\\ & \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}-\left( -2\hat{i}+\hat{j}+\hat{k} \right) \\\ & \Rightarrow 3\overrightarrow{c}=3\hat{i}+3\hat{j}+3\hat{k}+2\hat{i}-\hat{j}-\hat{k} \\\ & \Rightarrow 3\overrightarrow{c}=5\hat{i}+2\hat{j}+2\hat{k} \\\ & \Rightarrow \overrightarrow{c}=\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k} \\\ \end{aligned}
So, we get that the vector c\overrightarrow{c} is 53i^+23j^+23k^\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}.

Hence, answer is 53i^+23j^+23k^\dfrac{5}{3}\hat{i}+\dfrac{2}{3}\hat{j}+\dfrac{2}{3}\hat{k}.

Note: There is possibility of making a mistake while taking the vector triple product as a×(b×c)=(a.c)b(b.c)a\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( \overrightarrow{a}.\overrightarrow{c} \right)\overrightarrow{b}-\left( \overrightarrow{b}.\overrightarrow{c} \right)\overrightarrow{a} which is actually the formula for (a×b)×c\left( \overrightarrow{a}\times \overrightarrow{b} \right)\times \overrightarrow{c}. So, one needs to be careful while applying the vector triple product while solving the problem.