Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find a vector of magnitude 5units, and parallel to the resultant of the vectors a=2i^+3j^k^  and  b=i^2j^+k^.\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\space and\space \vec{b}=\hat{i}-2\hat{j}+\hat{k}.

Answer

We have,
a=2i^+3j^k^  and  b=i^2j^+k^.\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\space and\space \vec{b}=\hat{i}-2\hat{j}+\hat{k}.
Let c\vec{c} be the resultant of a→and b→.
Then,
c=a+b=(2+1)i^+(32)j^+(1+1)k^=3i^+j^\vec{c}=\vec{a}+\vec{b}=(2+1)\hat{i}+(3-2)\hat{j}+(-1+1)\hat{k}=3\hat{i}+\hat{j}
c=32+129+1=10∴|\vec{c}|=\sqrt{3^{2}+1^{2}}\sqrt{9+1}=\sqrt{10}
c^=cc=(3i^+j^)10∴\hat{c}=\frac{\vec{c}}{|\vec{c}|}=\frac{(3\hat{i}+\hat{j})}{\sqrt{10}}
Hence,the vector of magnitude 5units and parallel to the resultant of vectors a\vec{a} and b\vec{b} is \pm5.\hat{c}=$$\pm5.\frac{1}{\sqrt{10}}(3\hat{i}+\hat{j})$$=\pm\frac{3\sqrt{10}\hat{i}}{2}\pm\frac{\sqrt{10}}{2}\hat{j}.