Question
Mathematics Question on Vector Algebra
Find a vector of magnitude 5units, and parallel to the resultant of the vectors a=2i^+3j^−k^andb=i^−2j^+k^.
Answer
We have,
a=2i^+3j^−k^andb=i^−2j^+k^.
Let c be the resultant of a→and b→.
Then,
c=a+b=(2+1)i^+(3−2)j^+(−1+1)k^=3i^+j^
∴∣c∣=32+129+1=10
∴c^=∣c∣c=10(3i^+j^)
Hence,the vector of magnitude 5units and parallel to the resultant of vectors a and b is \pm5.\hat{c}=$$\pm5.\frac{1}{\sqrt{10}}(3\hat{i}+\hat{j})$$=\pm\frac{3\sqrt{10}\hat{i}}{2}\pm\frac{\sqrt{10}}{2}\hat{j}.