Solveeit Logo

Question

Question: Find a vector of magnitude \(3\) in the direction opposite to the direction of \[\vec v = \dfrac{1}{...

Find a vector of magnitude 33 in the direction opposite to the direction of v=12i^+12j^+12k^.\vec v = \dfrac{1}{2}\hat i + \dfrac{1}{2}\hat j + \dfrac{1}{2}\hat k.

Explanation

Solution

Firstly, we will find mod of v\vec v then we will use the formula of unit vector to calculate v^\hat v.By using formula of unit vector =vectormagnitude of the vector = \dfrac{{vector}}{{magnitude{\text{ of the vector}}}}.

Complete step by step solution:
V=12i12f12K\overrightarrow V = \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop f\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge
Here,V=12i12j12K\overrightarrow V = \dfrac{1}{2}i\dfrac{{ - 1}}{2}\mathop j\limits^ \wedge \dfrac{{ - 1}}{2}\mathop K\limits^ \wedge
We will calculate:V=12i12j12K\left| {\overrightarrow V } \right| = \left| {\dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right|
V=(12)2+(12)2+(12)2\left| {\overrightarrow V } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{ - 1}}{2}} \right)}^2}}

V=14+14+14 V=1+1+14 V=34 V=32  \left| {\overrightarrow V = \sqrt {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} } \right| \\\ \left| {\overrightarrow V } \right| = \sqrt {\dfrac{{1 + 1 + 1}}{4}} \\\ \left| {\overrightarrow V } \right| = \sqrt {\dfrac{3}{4}} \\\ \left| {\overrightarrow V } \right| = \dfrac{{\sqrt 3 }}{2} \\\

We will substitute the value ofV\left| V \right|in the formula as,
V=VV\mathop V\limits^ \wedge = \dfrac{{ - \overrightarrow V }}{{\left| {\overrightarrow V } \right|}}
=(+12i12j12K)32 =+(12i+12j+12K)32  = \dfrac{{ - \left( { + \dfrac{1}{2}\mathop i\limits^ \wedge - \dfrac{1}{2}\mathop j\limits^ \wedge - \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\\ \dfrac{{ = + \left( { - \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop K\limits^ \wedge } \right)}}{{\dfrac{{\sqrt 3 }}{2}}} \\\
Multiplying numerator and denominator by22, we have,
V=2(12j+12j+12R)232\Rightarrow \mathop V\limits^ \wedge = \dfrac{{2\left( { - \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}\mathop j\limits^ \wedge + \dfrac{1}{2}R} \right)}}{{2\dfrac{{\sqrt 3 }}{2}}}
V=(i+j+K)3\Rightarrow \mathop V\limits^ \wedge = \dfrac{{\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)}}{{\sqrt 3 }}
Multiply the unit vector by given magnitude(3)\left( 3 \right),
We have,
32=33(i+j+K)\Rightarrow 32 = \dfrac{3}{{\sqrt 3 }}\left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop K\limits^ \wedge } \right)
32=3(i+j+k)\Rightarrow 32 = \sqrt 3 \left( { - \mathop i\limits^ \wedge + \mathop j\limits^ \wedge + \mathop k\limits^ \wedge } \right)

Additional information: The dot product between two vectors aa and bb is a.b=abcosθa.b = ||a||||b||\cos \theta , where θ\theta is the angle between vectors aandba\,\,and\,\,b.

Note: Students should put the correct value in the formula for finding v^\hat v. In order to get the opposite direction v\vec v we need to get the direction of v\vec v first.