Question
Mathematics Question on Vector Algebra
Find a unit vector perpendicular to each of the vector a+banda−b,where a=3i^+2j+2kandb=i^+2j^−2k^.
Answer
We have,
a=3i^+2j+2kandb=i^+2j^−2k^.
∴ \vec{a}+\vec{b} =$$4\hat{i}+4\hat{j},\vec{a}-\vec{b}=2\hat{i}+4\hat{k}
(\vec{a}+\vec{b})\times (\vec{a}-\vec{b})=$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 4 & 4 & 0 \\\2&0&4\end{vmatrix}=\hat{i}(16)-\hat{j}(16)+\hat{k}(-8)=16\hat{i}-16\hat{j}-8\hat{k}
∴∣(a+b)∣×(a−b)∣=162+(−16)2+(−8)2
=22×82+22×82+82
=822+22+12=89=8×3=24
Hence,the unit vector perpendicular to each of the vectors a+banda−b is given by the relation,
=±∣(a+b→)×(a→−b→)∣(a+b)×(a−b)=±16i−16j−8k/24
=±32i^−2j^−k^=±32i^∓32j^∓31k^