Solveeit Logo

Question

Question: Find a unit vector perpendicular to both \(\vec a\) and \(\vec b\), where \(\vec a = \hat i - 2\hat ...

Find a unit vector perpendicular to both a\vec a and b\vec b, where a=i^2j^+3k^\vec a = \hat i - 2\hat j + 3\hat k and b=i^+2j^k^\vec b = \hat i + 2\hat j - \hat k.

Explanation

Solution

In cross product (or vector product) of two nonzero vectors a\vec a and b\vec b, the resultant vector is perpendicular to both vectors a\vec a and b\vec b.
So you got the hint, to find a vector perpendicular to two nonzero vectors a\vec a and b\vec b, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.

Complete step-by-step answer:
Step 1: Find the cross product of a\vec a and b\vec b.
a^×b^\hat a \times \hat b is the determinant of the matrix \left[ {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 1&{ - 2}&3 \\\ 1&2&{ - 1} \end{array}} \right]
a^×b^\hat a \times \hat b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 1&{ - 2}&3 \\\ 1&2&{ - 1} \end{array}} \right|
i^(26)j^(13)+k^(2+2)\Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right)
i^(4)j^(4)+k^(4)\Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right)
4i^+4j^+4k^\Rightarrow - 4\hat i + 4\hat j + 4\hat k
Let c=a^×b^\vec c = \hat a \times \hat b
Step 2: Find the unit vector c^\hat c:
c=4i^+4j^+4k^\vec c = - 4\hat i + 4\hat j + 4\hat k
Magnitude of c\vec c:
c=(4)2+(4)2+(4)2  =16+16+16  =43  \left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\\ \Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\\ \Rightarrow {\text{ }} = 4\sqrt 3 \\\
Unit vector c^=cc\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}
Therefore, c^\hat c =4i^+4j^+4k^43 = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}
So, \hat c$$$ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k$$ **Unit vector perpendicular to both \vec aandand\vec b,where, where \vec a = \hat i - 2\hat j + 3\hat kandand\vec b = \hat i + 2\hat j - \hat k$ is 13i^+13j^+13k^ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k.**

Additional Information:
The unit vector i^\hat i is along the direction of the x-axis, the unit vector j^\hat j is along the direction of the y-axis, and the unit vector k^\hat k is along the direction of the z-axis. Thus, i^, j^ & k^\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k are unit vectors mutually perpendicular to each other.

Note: You can check the final answer by finding the magnitude of the vector c^\hat c.
c^=\left| {\hat c} \right| = $$\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} = \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} = \sqrt {\dfrac{3}{3}} = \sqrt 1 $$

=1= 1
a^×b^=(b^×a^)\hat a \times \hat b = - \left( {\hat b \times \hat a} \right). So, if you have calculated b^×a^\hat b \times \hat a = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ 1&2&{ - 1} \\\ 1&{ - 2}&3 \end{array}} \right|, the resultant vector i.e. 4i^4j^4k^4\hat i - 4\hat j - 4\hat k still be a vector perpendicular to both a\vec a and b\vec b but in the direction opposite to a^×b^\hat a \times \hat b.
Also, the cross product of two nonzero vectors a\vec a and b\vec b is the product of the magnitude of both vectors a\vec a and b\vec b, and sine of the angle between them. i.e.
a^×b^=a^b^sinθ n^\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n, where θ\theta is the acute angle between vectors a\vec a and b\vec b. Here n^\hat n is the unit vector perpendicular to the plane containing vectors a\vec a and b\vec b.