Solveeit Logo

Question

Question: Find a quadratic polynomial whose zeroes are reciprocals of the zero of the polynomial f(x) = ax^2 +...

Find a quadratic polynomial whose zeroes are reciprocals of the zero of the polynomial f(x) = ax^2 + bx + c, a ≠ 0, c≠ 0.

Answer

cx^2+bx+a=0

Explanation

Solution

Let the zeros of f(x)=ax2+bx+cf(x)=ax^2+bx+c be rr and ss. Then:

r+s=ba,rs=ca.r+s=-\frac{b}{a},\quad rs=\frac{c}{a}.

The reciprocals 1/r1/r and 1/s1/s have:

Sum=1r+1s=r+srs=baca=bc,Product=1rs=ac.\text{Sum}=\frac{1}{r}+\frac{1}{s}=\frac{r+s}{rs}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c},\quad \text{Product}=\frac{1}{rs}=\frac{a}{c}.

A quadratic polynomial with these as zeros is:

x2(bc)x+ac=x2+bcx+ac=0.x^2 - \left(-\frac{b}{c}\right)x + \frac{a}{c}=x^2+\frac{b}{c}x+\frac{a}{c}=0.

Multiplying through by cc (since c0c\ne0) gives:

cx2+bx+a=0.cx^2+bx+a=0.