Solveeit Logo

Question

Mathematics Question on Relationship between Zeroes and Coefficients of a Polynomial

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. (i)14,1\dfrac{1}{4} , 1 (ii) 2,13\sqrt 2 , \dfrac{1}{3} (iii) 0,50, \sqrt5 (iv) 1,11, 1 (v) 14,14-\dfrac{1}{4} ,\dfrac{1}{4}(vi) 4,14, 1

Answer

(i) 14,1\dfrac{1}{4} ,1
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes are α and ẞ.
α+β=13=baα + β = \dfrac{1}{3} = -\dfrac{b}{a}
αβ=1=44=caαβ=-1 = -\dfrac{4}{4} =\dfrac{c}{a}
If a=4,a =4, then b=1,c=4b= -1, c = -4

Therefore, the quadratic polynomial is 4x2x4. 4x^2 - x - 4.


(ii)√2,1/3
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes are α and ẞ.
α+β=2=323=baα + β = √2= \dfrac{3√2}{3} = -\dfrac{b}{a}
αβ=13=caαβ = \dfrac{1}{3} = \dfrac{c}{a}

If a=3,a= 3, then b=32,c=1b=-3√2, c=1
Therefore, the quadratic polynomial is 3x232x+1.3x^2 - 3√2x + 1.


(iii) 0,√5
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes be αα and β.β.
α+=1=(1)1=baα + ẞ = 1 = -\dfrac{(-1)}{1} =\dfrac{ -b}{a}
αβ=5=51=caαβ = √5 = \dfrac{√5}{1} = \dfrac{c}{a}

If a=1a=1, then b=0,c=5b=0, c=√5

Therefore, the quadratic polynomial is x2+5.x^2+√5.


(iv)1, 1
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes be αα and β.β. .
α+=1=(1)1=baα + ẞ = 1 = -\dfrac{(-1)}{1} =\dfrac{ -b}{a}
αβ=1=11=caαβ = 1 = \dfrac{1}{1 }= \dfrac{c}{a}

If a=1, then b=1,c=5b=-1, c=√5

Therefore, the quadratic polynomial is x2x+1.x^2 -x +1.


**(v) **14,14-\dfrac{1}{4} ,\dfrac{1}{4}
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes are αα and β.β.

α+βα+β =$$ -\dfrac{1}{4} =ba=-\dfrac{b}{a}
αβ=14=caαβ = \dfrac{1}{4} = \dfrac{c}{a}

If a=4, then b=1,c=1b=1, c=1

Therefore, the quadratic polynomial is4x2+x+1. 4x^2 +x +1.


(vi)4, 1
Let the polynomial be ax2+bx+cax^2 + bx + c and its zeroes be 𝛼 and 𝛽.
α+=4=(4)1=baα + ẞ = 4 = -\dfrac{(-4)}{1}= \dfrac{ -b}{a}
αβ=1=11=caαβ = 1 =\dfrac{1}{1}= \dfrac{c}{a}

If a=1a=1a=1 then b=4,c=1 b=-4, c=1

Therefore, the quadratic polynomial is x24x+1.x^2 -4x +1.