Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find a position vector of a point RR which devides the line joining two points PP and QQ whose position vectors are i^+2j^k^\hat{i}+2\hat{j}-\hat{k} and
i^+j^+k^\hat{i}+\hat{j}+\hat{k} respectively,in the ratio 2:12\ratio 1
(i)internally
(ii)externally

Answer

The position vector of point R dividing the line segment joining two points P and Q in the ratio m:n is given by:
i.Internally:
mb+nam+n\frac{m\vec{b}+n\vec{a}}{m+n}
ii.Externally:
mbnamn\frac{m\vec{b}-n\vec{a}}{m-n}
Position vectors of PP and QQ are given as:
OP=i^+2j^k^\vec{OP}=\hat{i}+2\hat{j}-\hat{k} and i^+j^+k^\hat{i}+\hat{j}+\hat{k}
(i)The position vector of point RR which divides the line joining two points PP and QQ internally in the ratio 2:12\ratio 1 is given by,
OR=2(i^+j^+k^)+1(i^+2j^k^)2+1\vec{OR}=\frac{2(-\hat{i}+\hat{j}+\hat{k})+1(\hat{i}+2\hat{j}-\hat{k})}{2+1}
=(2i^+2j^+2k^)+(i^+2j^k^)3=\frac{(-2\hat{i}+2\hat{j}+2\hat{k})+(\hat{i}+2\hat{j}-\hat{k})}{3}
=i^+4j^+k^3=\frac{-\hat{i}+4\hat{j}+\hat{k}}{3}
=13i^+43j^+13k^=\frac{-1}{3}\hat{i}+\frac{4}{3}\hat{j}+\frac{1}{3}\hat{k}
(ii)The position vector of point RR which devides the line joining PP and QQ externally in the ratio 2:12\ratio 1 is given by,
OR=2(i^+j^+k^)1(i^+2j^k^)21\vec{OR}=\frac{2(-\hat{i}+\hat{j}+\hat{k})-1(\hat{i}+2\hat{j}-\hat{k})}{2-1}
=(2i^+2j^+2k^)(i^+2j^k^)=(-2\hat{i}+2\hat{j}+2\hat{k})-(\hat{i}+2\hat{j}-\hat{k})
=3i^+3k^=-3\hat{i}+3\hat{k}.