Solveeit Logo

Question

Mathematics Question on Differential equations

Find a particular solution satisfying the given condition:dydx3y cot x=sin2x; y=2 when x=π2\frac {dy}{dx}-3y\ cot\ x=sin2x;\ y=2 \ when\ x=\frac \pi2

Answer

The differential equation is dydx\frac {dy}{dx}3y cot x = sin 2x

This is a linear differential equation of the form:

dydx\frac {dy}{dx} + py = Q (where p=-3 cot x and Q=sin 2x)

Now, I.F. = ∫(Q×I.F.)dx + C

⇒y.1sin3x\frac {1}{sin^3x}=∫[sin2x.1sin3x\frac {1}{sin^3x}]dx + C

ysin3x\frac {y}{sin ^3x} = 2∫(cot x . cosec x)dx + C

ysin3x\frac {y}{sin ^3x} = -2 cosec x + c

⇒y = -2sin2x + C sin3x ……....(1)

Now, y=2 at x=π2\frac \pi2

Therefore,we get:

2=-2+C

⇒C=4

Substituting C=4 in equation(1),we get:

y = -2sin2x + 4sin3x

⇒y = 4sin3x - 2sin2x

This is the required particular solution of the given differential equation.