Question
Mathematics Question on Differential equations
Find a particular solution satisfying the given condition:dxdy−3y cot x=sin2x; y=2 when x=2π
Answer
The differential equation is dxdy3y cot x = sin 2x
This is a linear differential equation of the form:
dxdy + py = Q (where p=-3 cot x and Q=sin 2x)
Now, I.F. = ∫(Q×I.F.)dx + C
⇒y.sin3x1=∫[sin2x.sin3x1]dx + C
⇒sin3xy = 2∫(cot x . cosec x)dx + C
⇒sin3xy = -2 cosec x + c
⇒y = -2sin2x + C sin3x ……....(1)
Now, y=2 at x=2π
Therefore,we get:
2=-2+C
⇒C=4
Substituting C=4 in equation(1),we get:
y = -2sin2x + 4sin3x
⇒y = 4sin3x - 2sin2x
This is the required particular solution of the given differential equation.