Solveeit Logo

Question

Mathematics Question on Differential equations

Find a particular solution satisfying the given condition:(1+x2)dydx+2xy=11+x2; y=0 when x=1(1+x^2)\frac {dy}{dx}+2xy=\frac {1}{1+x^2}; \ y=0 \ when \ x=1

Answer

(1+x2)dydx\frac {dy}{dx}+2xy = 11+x2\frac {1}{1+x^2}

dydx\frac {dy}{dx}+2xy1+x2\frac {2xy}{1+x^2} = 1(1+x2)2\frac {1}{(1+x^2)^2}

This is a linear differential equation of the form:

dydx\frac {dy}{dx}+py = Q (where p=2x1+x2\frac {2x}{1+x^2} and Q=1(1+x2)2\frac {1}{(1+x^2)^2}

Now, I.F. = e∫pdx = e2x1+x2dxe^{∫\frac {2x}{1+x^2} dx}= elog(1+x2)e^{log(1+x^2)} = 1+x2
The general solution of the given differential equation is given by the relation,

y(I.F.) = ∫(Q×I.F.)dx + C

⇒y(1+x2) = ∫[1(1+x2)2\frac {1}{(1+x^2)^2}.(1+x2)]dx + C

⇒y(1+x2) = ∫1(1+x2)\frac {1}{(1+x^2)}dx + C

⇒y(1+x2) = tan-1x+C ……...(1)

Now, y=0 at x=1.

Therefore,

0 = tan-1x+C

⇒C = -π4\frac \pi4

Substituting C=-π4\frac \pi4 in equation(1), we get:

y(1+x2) = tan-1x - π4\frac \pi4

This is the required general solution of the given differential equation.