Question
Mathematics Question on Differential equations
Find a particular solution of the differential equation(x+1)dxdy=2e−y−1,given that y=0, when x=0
Answer
The correct answer is: y=log∣x+12x+1∣,(x=−1)
(x+1)dxdy=2e−y−1
⇒2e−y−1dy=x+1dx
⇒2−eyeydy=x+1dx
Integrating both sides,we get:
∫2−eyeydy=log∣x+1∣+logC...(1)
Let 2−ey=t.
∴dyd(2−ey)=dydt
⇒−ey=dydt
⇒eydt=−dt
Substituting this value in equation(1),we get:
∫t−dt=log∣x+1∣+logC
⇒−log∣t∣=log∣C(x+1)∣
⟹−log∣2−ey∣=log∣C(x+1)∣
⇒2−ey1=C(x+1)
⇒2−ey=C(x+1)1...(2)
Now,at x=0 and y=0,equation (2) becomes:
⇒2−1=C1
⇒C=1
Substituting C=1 in equation(2),we get:
2−ey=x+11
⇒ey=2−x+11
⇒ey=x+12x+2−1
⇒ey=x+12x+1
⇒y=log∣x+12x+1∣,(x=−1)
This is the required particular solution of the given differential equation.