Solveeit Logo

Question

Mathematics Question on Differential equations

Find a particular solution of the differential equation(x+1)dydx=2ey1(x+1)\frac{dy}{dx}=2e^{-y}-1,given that y=0y=0, when x=0x=0

Answer

The correct answer is: y=log2x+1x+1,(x1)y=log|\frac{2x+1}{x+1}|,(x≠-1)
(x+1)dydx=2ey1(x+1)\frac{dy}{dx}=2e^{-y}-1
dy2ey1=dxx+1⇒\frac{dy}{2e^{-y}-1}=\frac{dx}{x+1}
eydy2ey=dxx+1⇒\frac{e^ydy}{2-e^y}=\frac{dx}{x+1}
Integrating both sides,we get:
eydy2ey=logx+1+logC...(1)∫\frac{e^ydy}{2-e^y}=log|x+1|+logC...(1)
Let 2ey=t.2-e^y=t.
ddy(2ey)=dtdy∴\frac{d}{dy}(2-e^y)=\frac{dt}{dy}
ey=dtdy⇒-e^y=\frac{dt}{dy}
eydt=dt⇒e^ydt=-dt
Substituting this value in equation(1),we get:
dtt=logx+1+logC∫\frac{-dt}{t}=log|x+1|+logC
logt=logC(x+1)⇒-log|t|=log|C(x+1)|
    log2ey=logC(x+1)\implies -log|2-e^y|=log|C(x+1)|
12ey=C(x+1)⇒\frac{1}{2-e^y}=C(x+1)
2ey=1C(x+1)...(2)⇒2-e^y=\frac{1}{C(x+1)}...(2)
Now,at x=0x=0 and y=0y=0,equation (2) becomes:
21=1C⇒2-1=\frac{1}{C}
C=1⇒C=1
Substituting C=1C=1 in equation(2),we get:
2ey=1x+12-e^y=\frac{1}{x+1}
ey=21x+1⇒e^y=2-\frac{1}{x+1}
ey=2x+21x+1⇒e^y=\frac{2x+2-1}{x+1}
ey=2x+1x+1⇒e^y=\frac{2x+1}{x+1}
y=log2x+1x+1,(x1)⇒y=log|\frac{2x+1}{x+1}|,(x≠-1)
This is the required particular solution of the given differential equation.