Solveeit Logo

Question

Mathematics Question on Differential equations

Find a particular solution of the differential equation dydx+ycotx=4xcosecx(x0),\frac{dy}{dx}+ycotx=4x\,cosec\, x(x≠0), given that y=0y=0 when x=π2x=\frac{π}{2}

Answer

The correct answer is: ysinx=2x2π22ysinx=2x^2-\frac{π^2}{2}
The given differential equation is:
dydx+ycotx=4xcosecx\frac{dy}{dx}+ycotx=4x\,cosec\,x
This equation is a linear differential equation of the form
dydx+py=Q\frac{dy}{dx}+py=Q,where p=cotxp=cotx and Q=4xcosecx.Q=4x\, cosecx.
Now,I.F.=epdx=ecotxdx=elogsinx=sinxI.F.=e^{∫pdx}=e^{∫cot xdx}=e^{log|sinx|}=sinx
The given solution of the given differential equation is given by,
y(I.F.)=(Q×I.F.)dx+Cy(I.F.)=∫(Q×I.F.)dx+C
ysinx=(4xcosecx.sinx)dx+C⇒ysinx=∫(4x\,cosecx.sinx)dx+C
ysinx=4xdx+C⇒ysinx=4∫xdx+C
ysinx=4.x22+C⇒ysinx=4.\frac{x^2}{2}+C
ysinx=2x2+C...(1)⇒ysinx=2x^2+C...(1)
Now,y=0y=0 at x=π2x=\frac{π}{2}
Therefore,equation(1)becomes:
0=2×π24+C0=2×\frac{π^2}{4}+C
C=π22⇒C=\frac{-π^2}{2}
Substituting C=π22C=\frac{-π^2}{2} in equation(1),we get:
ysinx=2x2π22ysinx=2x^2-\frac{π^2}{2}
This is the required particular solution of the given differential equation.