Solveeit Logo

Question

Mathematics Question on Differential equations

Find a particular solution of the differential equation (xy)(dx+dy)=dxdy(x-y)(dx+dy)=dx-dy, given that y=1y=-1, when x=0x=0 (Hint:put xy=tx-y=t)

Answer

The correct answer is: logxy=x+y+1log|x-y|=x+y+1
(xy)(dx+dy)=dxdy(x-y)(dx+dy)=dx-dy
(xy+1)dy=(1x+y)dx⇒(x-y+1)dy=(1-x+y)dx
dxdy=1x+yxy+1⇒\frac{dx}{dy}=\frac{1-x+y}{x-y+1}
dydx=1(xy)1+(xy)...(1)⇒\frac{dy}{dx}=\frac{1-(x-y)}{1+(x-y)}...(1)
Let xy=t.x-y=t.
ddx(xy)=dtdx⇒\frac{d}{dx}(x-y)=\frac{dt}{dx}
1dydx=dtdx⇒1-\frac{dy}{dx}=\frac{dt}{dx}
1dtdx=dydx⇒1-\frac{dt}{dx}=\frac{dy}{dx}
Substituting the values of xyx-y and dydx\frac{dy}{dx} in equation(1),we get:
1dtdx=1t1+t1-\frac{dt}{dx}=\frac{1-t}{1+t}
dtdx=1(1t1+t)⇒\frac{dt}{dx}=1-(\frac{1-t}{1+t})
dtdx=(1+t)(1t)1+t⇒\frac{dt}{dx}=\frac{(1+t)-(1-t)}{1+t}
dtdx=2t1+t⇒\frac{dt}{dx}=\frac{2t}{1+t}
(1+tt)dt=2dx⇒(\frac{1+t}{t})dt=2dx
(1+1t)dt=2dx....(2)⇒(1+\frac{1}{t})dt=2dx....(2)
Integrating both sides,we get:
t+logt=2x+Ct+log|t|=2x+C
(xy)+logxy=2x+C⇒(x-y)+log|x-y|=2x+C
logxy=x+y+C...(3)⇒log|x-y|=x+y+C...(3)
Now,logxy=x+y+C...(3)⇒log|x-y|=x+y+C...(3)
Therefore,equation(3)becomes:
log1=01+Clog\,1=0-1+C
C=1⇒C=1
Substituting C=1C=1 in equation(3),we get:
logxy=x+y+1log|x-y|=x+y+1
This is the required particular solution of the given differential equation.