Question
Mathematics Question on Differential equations
Find a particular solution of the differential equation (x−y)(dx+dy)=dx−dy, given that y=−1, when x=0 (Hint:put x−y=t)
The correct answer is: log∣x−y∣=x+y+1
(x−y)(dx+dy)=dx−dy
⇒(x−y+1)dy=(1−x+y)dx
⇒dydx=x−y+11−x+y
⇒dxdy=1+(x−y)1−(x−y)...(1)
Let x−y=t.
⇒dxd(x−y)=dxdt
⇒1−dxdy=dxdt
⇒1−dxdt=dxdy
Substituting the values of x−y and dxdy in equation(1),we get:
1−dxdt=1+t1−t
⇒dxdt=1−(1+t1−t)
⇒dxdt=1+t(1+t)−(1−t)
⇒dxdt=1+t2t
⇒(t1+t)dt=2dx
⇒(1+t1)dt=2dx....(2)
Integrating both sides,we get:
t+log∣t∣=2x+C
⇒(x−y)+log∣x−y∣=2x+C
⇒log∣x−y∣=x+y+C...(3)
Now,⇒log∣x−y∣=x+y+C...(3)
Therefore,equation(3)becomes:
log1=0−1+C
⇒C=1
Substituting C=1 in equation(3),we get:
log∣x−y∣=x+y+1
This is the required particular solution of the given differential equation.