Question
Question: Find \[A\left( x \right)\] and \[B\left( x \right)\] in \[\int {\dfrac{{\tan x - \tan \alpha }}{{\ta...
Find A(x) and B(x) in ∫tanx+tanαtanx−tanαdx=A(x)cos2α+B(x)sin2α+C.
Solution
Here we will first consider the LHS of the equation and solve it. We will convert the equation in terms of the sin and cos function. Then we will simplify the equation using the trigonometric properties. Then we will compare the final equation with the given equation to get the value of A(x) and B(x).
Complete Step by Step Solution:
Given equation is ∫tanx+tanαtanx−tanαdx.
Now we will solve this equation to get the required values. Firstly we will write the equation in terms of the sin and cos function. We know the tan function is equal to the ratio of the sin to cos function. Therefore, we get
⇒∫tanx+tanαtanx−tanαdx=∫cosxsinx+cosαsinαcosxsinx−cosαsinαdx
Now we will simplify the equation by simply taking the LCM in the numerator and denominator. Therefore, we get
⇒∫tanx+tanαtanx−tanαdx=∫cosxcosαsinxcosα+sinαcosxcosxcosαsinxcosα−sinαcosxdx
⇒∫tanx+tanαtanx−tanαdx=∫sinxcosα+sinαcosxsinxcosα−sinαcosxdx
Now we will use the basic trigonometry properties to simplify the above equation i.e. sin(A+B)=sinAcosB+cosAsinB and sin(A−B)=sinAcosB−cosAsinB. Therefore, we get
⇒∫tanx+tanαtanx−tanαdx=∫sin(x+α)sin(x−α)dx
We can write the above equation as
⇒∫tanx+tanαtanx−tanαdx=∫sin(x+α)sin(x+α−α−α)dx
⇒∫tanx+tanαtanx−tanαdx=∫sin(x+α)sin((x+α)−(2α))dx
Now we will use the basic trigonometry property to expand the numerator of the equation i.e. sin(A−B)=sinAcosB−cosAsinB. Therefore, we get
⇒∫tanx+tanαtanx−tanαdx=∫sin(x+α)sin(x+α)cos2α−cos(x+α)sin2αdx
Simplifying the above equation, we get
\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha }}{{\sin \left( {x + \alpha } \right)}} - \dfrac{{\cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \right)} \,dx$$$$ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\cos 2\alpha - \cot \left( {x + \alpha } \right)\sin 2\alpha } \right)} \,dx
Now integrating the terms, we get
⇒∫tanx+tanαtanx−tanαdx=∫cos2αdx−∫cot(x+α)sin2αdx
⇒∫tanx+tanαtanx−tanαdx=cos2α∫dx−sin2α∫cot(x+α)dx
We know that the integration ∫dx=x and ∫cotxdx=ln∣sinx∣. Therefore, we get
⇒∫tanx+tanαtanx−tanαdx=cos2α⋅(x)−sin2α⋅ln∣sin(x+α)∣+C
⇒∫tanx+tanαtanx−tanαdx=xcos2α−ln∣sin(x+α)∣⋅sin2α+C
Now we will simply comparing it with the given expression i.e. ∫tanx+tanαtanx−tanαdx=A(x)cos2α+B(x)sin2α+C, we will get the value of A(x) and B(x). Therefore, we get
⇒A(x)=x ⇒B(x)=−ln∣sin(x+α)∣
Hence the value of A(x)=x and B(x)=−ln∣sin(x+α)∣.
Note:
We should note that the ratio of the sinθ and cosθ is equal to the tanθ. Also the ratio of cosθ and sinθ is equal to cotθ. Here, we have converted tanθ into sinθ and cosθ because it is easier to solve sine and cosine functions using the trigonometric identities and properties. Trigonometric identities are used only when the trigonometric functions are present in the equation.
Basic properties of the trigonometric functions and basic trigonometric formulas of the cos function are
cos(A+B)=cosAcosB−sinAsinBcos(A−B)=cosAcosB+sinAsinB