Solveeit Logo

Question

Question: Find \[A\left( x \right)\] and \[B\left( x \right)\] in \[\int {\dfrac{{\tan x - \tan \alpha }}{{\ta...

Find A(x)A\left( x \right) and B(x)B\left( x \right) in tanxtanαtanx+tanαdx=A(x)cos2α+B(x)sin2α+C\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx = A\left( x \right)\cos 2\alpha + B\left( x \right)\sin 2\alpha + C.

Explanation

Solution

Here we will first consider the LHS of the equation and solve it. We will convert the equation in terms of the sin and cos function. Then we will simplify the equation using the trigonometric properties. Then we will compare the final equation with the given equation to get the value of A(x)A\left( x \right) and B(x)B\left( x \right).

Complete Step by Step Solution:
Given equation is tanxtanαtanx+tanαdx\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx.
Now we will solve this equation to get the required values. Firstly we will write the equation in terms of the sin and cos function. We know the tan function is equal to the ratio of the sin to cos function. Therefore, we get
tanxtanαtanx+tanαdx=sinxcosxsinαcosαsinxcosx+sinαcosαdx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x}}{{\cos x}} - \dfrac{{\sin \alpha }}{{\cos \alpha }}}}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin \alpha }}{{\cos \alpha }}}}} \,dx
Now we will simplify the equation by simply taking the LCM in the numerator and denominator. Therefore, we get
tanxtanαtanx+tanαdx=sinxcosαsinαcosxcosxcosαsinxcosα+sinαcosxcosxcosαdx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}{{\dfrac{{\sin x\cos \alpha + \sin \alpha \cos x}}{{\cos x\cos \alpha }}}}} \,dx
tanxtanαtanx+tanαdx=sinxcosαsinαcosxsinxcosα+sinαcosxdx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin x\cos \alpha - \sin \alpha \cos x}}{{\sin x\cos \alpha + \sin \alpha \cos x}}} \,dx
Now we will use the basic trigonometry properties to simplify the above equation i.e. sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B and sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B. Therefore, we get
tanxtanαtanx+tanαdx=sin(xα)sin(x+α)dx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx
We can write the above equation as
tanxtanαtanx+tanαdx=sin(x+ααα)sin(x+α)dx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha - \alpha - \alpha } \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx
tanxtanαtanx+tanαdx=sin((x+α)(2α))sin(x+α)dx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {\left( {x + \alpha } \right) - \left( {2\alpha } \right)} \right)}}{{\sin \left( {x + \alpha } \right)}}} \,dx
Now we will use the basic trigonometry property to expand the numerator of the equation i.e. sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B. Therefore, we get
tanxtanαtanx+tanαdx=sin(x+α)cos2αcos(x+α)sin2αsin(x+α)dx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha - \cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \,dx
Simplifying the above equation, we get
\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\dfrac{{\sin \left( {x + \alpha } \right)\cos 2\alpha }}{{\sin \left( {x + \alpha } \right)}} - \dfrac{{\cos \left( {x + \alpha } \right)\sin 2\alpha }}{{\sin \left( {x + \alpha } \right)}}} \right)} \,dx$$$$ \Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\left( {\cos 2\alpha - \cot \left( {x + \alpha } \right)\sin 2\alpha } \right)} \,dx
Now integrating the terms, we get
tanxtanαtanx+tanαdx=cos2αdxcot(x+α)sin2αdx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \int {\cos 2\alpha \,dx} - \int {\cot \left( {x + \alpha } \right)\sin 2\alpha dx}
tanxtanαtanx+tanαdx=cos2αdxsin2αcot(x+α)dx\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \int {\,dx} - \sin 2\alpha \int {\cot \left( {x + \alpha } \right)dx}
We know that the integration dx=x\int {dx} = x and cotxdx=lnsinx\int {\cot x} \,dx = \ln \left| {\sin x} \right|. Therefore, we get
tanxtanαtanx+tanαdx=cos2α(x)sin2αlnsin(x+α)+C\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = \cos 2\alpha \cdot \left( x \right) - \sin 2\alpha \cdot \ln \left| {\sin \left( {x + \alpha } \right)} \right| + C
tanxtanαtanx+tanαdx=xcos2αlnsin(x+α)sin2α+C\Rightarrow \int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} \,dx = x\cos 2\alpha - \ln \left| {\sin \left( {x + \alpha } \right)} \right| \cdot \sin 2\alpha + C
Now we will simply comparing it with the given expression i.e. tanxtanαtanx+tanαdx=A(x)cos2α+B(x)sin2α+C\int {\dfrac{{\tan x - \tan \alpha }}{{\tan x + \tan \alpha }}} dx = A\left( x \right)\cos 2\alpha + B\left( x \right)\sin 2\alpha + C, we will get the value of A(x)A\left( x \right) and B(x)B\left( x \right). Therefore, we get
A(x)=x B(x)=lnsin(x+α)\begin{array}{l} \Rightarrow A\left( x \right) = x\\\ \Rightarrow B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|\end{array}

Hence the value of A(x)=xA\left( x \right) = x and B(x)=lnsin(x+α)B\left( x \right) = - \ln \left| {\sin \left( {x + \alpha } \right)} \right|.

Note:
We should note that the ratio of the sinθ\sin \theta and cosθ\cos \theta is equal to the tanθ\tan \theta . Also the ratio of cosθ\cos \theta and sinθ\sin \theta is equal to cotθ\cot \theta . Here, we have converted tanθ\tan \theta into sinθ\sin \theta and cosθ\cos \theta because it is easier to solve sine and cosine functions using the trigonometric identities and properties. Trigonometric identities are used only when the trigonometric functions are present in the equation.
Basic properties of the trigonometric functions and basic trigonometric formulas of the cos function are
cos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinB\begin{array}{l}\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\\\\\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\end{array}