Solveeit Logo

Question

Question: Find a general solution for \( x \) if \( \sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \ri...

Find a general solution for xx if sin8xcos6x=3(sin6x+cos8x)\sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right) .

Explanation

Solution

Hint : In this problem, first we will simplify the given equation. Then, we will use the values of trigonometric functions for particular angles. Then, we will use some trigonometric identities and formulas to find the general solution of the given problem.

Complete step-by-step answer :
In the given problem, we have to find xx if sin8xcos6x=3(sin6x+cos8x)(1)\sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right) \cdots \cdots \left( 1 \right) . Let us simplify the equation (1)\left( 1 \right) . So, we can write
sin8xcos6x=3sin6x+3cos8x 3cos8xsin8x=cos6x3sin6x 3cos8xsin8x=(cos6x+3sin6x)(2)  \sin 8x - \cos 6x = \sqrt 3 \sin 6x + \sqrt 3 \cos 8x \\\ \Rightarrow \sqrt 3 \cos 8x - \sin 8x = - \cos 6x - \sqrt 3 \sin 6x \\\ \Rightarrow \sqrt 3 \cos 8x - \sin 8x = - \left( {\cos 6x + \sqrt 3 \sin 6x} \right) \cdots \cdots \left( 2 \right) \\\
Let us divide by 22 to each term on both sides of equation (2)\left( 2 \right) . So, we can write
32cos8x12sin8x=(12cos6x+32sin6x)(3)\dfrac{{\sqrt 3 }}{2}\cos 8x - \dfrac{1}{2}\sin 8x = - \left( {\dfrac{1}{2}\cos 6x + \dfrac{{\sqrt 3 }}{2}\sin 6x} \right) \cdots \cdots \left( 3 \right)
We know that cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} and sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2} . Use this information on the LHS of equation (3)\left( 3 \right) . Also we know that cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2} and sinπ3=32\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2} . Use this information on the RHS of the equation (3)\left( 3 \right) . So, we can write
cos(π6)cos8xsin(π6)sin8x=[cos(π3)cos6x+sin(π3)sin6x](4)\cos \left( {\dfrac{\pi }{6}} \right)\cos 8x - \sin \left( {\dfrac{\pi }{6}} \right)\sin 8x = - \left[ {\cos \left( {\dfrac{\pi }{3}} \right)\cos 6x + \sin \left( {\dfrac{\pi }{3}} \right)\sin 6x} \right] \cdots \cdots \left( 4 \right)
We know that cosAcosBsinAsinB=cos(A+B)\cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) . Use this information on LHS of the equation (4)\left( 4 \right) . Also we know that cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos \left( {A - B} \right) . Use this information on the RHS of equation (4)\left( 4 \right) . So, we can write
cos(8x+π6)=cos(6xπ3)(5)\cos \left( {8x + \dfrac{\pi }{6}} \right) = - \cos \left( {6x - \dfrac{\pi }{3}} \right) \cdots \cdots \left( 5 \right)
We know that cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta . Use this information on the RHS of the equation (5)\left( 5 \right) . So, we can write
cos(8x+π6)=cos[π(6xπ3)] cos(8x+π6)=cos(6x+4π3)(6)  \cos \left( {8x + \dfrac{\pi }{6}} \right) = \cos \left[ {\pi - \left( {6x - \dfrac{\pi }{3}} \right)} \right] \\\ \Rightarrow \cos \left( {8x + \dfrac{\pi }{6}} \right) = \cos \left( { - 6x + \dfrac{{4\pi }}{3}} \right) \cdots \cdots \left( 6 \right) \\\
We know that for any real numbers xx and yy , cosx=cosyx=2nπ±y\cos x = \cos y \Rightarrow x = 2n\pi \pm y where nn is integer. Use this information in equation (6)\left( 6 \right) . So, we can write
8x+π6=2nπ±(6x+4π3)(7)8x + \dfrac{\pi }{6} = 2n\pi \pm \left( { - 6x + \dfrac{{4\pi }}{3}} \right) \cdots \cdots \left( 7 \right) where nn is integer.
Let us solve the equation (7)\left( 7 \right) for xx by considering positive signs on RHS. So, we can write
8x+π6=2nπ+(6x+4π3) 8x+6x=2nπ+4π3π6 14x=2nπ+7π6 x=nπ7+π12  8x + \dfrac{\pi }{6} = 2n\pi + \left( { - 6x + \dfrac{{4\pi }}{3}} \right) \\\ \Rightarrow 8x + 6x = 2n\pi + \dfrac{{4\pi }}{3} - \dfrac{\pi }{6} \\\ \Rightarrow 14x = 2n\pi + \dfrac{{7\pi }}{6} \\\ \Rightarrow x = \dfrac{{n\pi }}{7} + \dfrac{\pi }{{12}} \\\
Let us solve the equation (7)\left( 7 \right) for xx by considering negative sign on RHS. So, we can write
8x+π6=2nπ(6x+4π3) 8x6x=2nπ4π3π6 2x=2nπ3π2 x=nπ3π4  8x + \dfrac{\pi }{6} = 2n\pi - \left( { - 6x + \dfrac{{4\pi }}{3}} \right) \\\ \Rightarrow 8x - 6x = 2n\pi - \dfrac{{4\pi }}{3} - \dfrac{\pi }{6} \\\ \Rightarrow 2x = 2n\pi - \dfrac{{3\pi }}{2} \\\ \Rightarrow x = n\pi - \dfrac{{3\pi }}{4} \\\
Hence, x=nπ7+π12x = \dfrac{{n\pi }}{7} + \dfrac{\pi }{{12}} or x=nπ3π4x = n\pi - \dfrac{{3\pi }}{4} if sin8xcos6x=3(sin6x+cos8x)\sin 8x - \cos 6x = \sqrt 3 \left( {\sin 6x + \cos 8x} \right) . This is the general solution of the given problem.

Note : In this type of problems, trigonometric identities and formulas are very useful to find the general solution. Remember that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right) and sinAcosBcosAsinB=sin(AB)\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right) . Also remember that for any real numbers xx and yy , sinx=sinyx=nπ+(1)ny\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y where nn is integer.