Solveeit Logo

Question

Question: Find a formula for the nth derivative of \[\sin \left( {ax + b} \right)\] and \[\cos \left( {ax + b}...

Find a formula for the nth derivative of sin(ax+b)\sin \left( {ax + b} \right) and cos(ax+b)\cos \left( {ax + b} \right).

Explanation

Solution

In order to solve this question, for first part we will first differentiate the given function using ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and for second part by using ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x . After that we will differentiate again and find a few more derivatives and try to transform in the form of a given function and in the form of the first derivative. Then finally generalise them to get the nth derivative.

Complete step by step answer:
For first part, the given function is,
f(x)=sin(ax+b ) (i)f\left( x \right) = \sin \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.Now we know that
ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
Therefore, on differentiating equation (i)\left( i \right) we get
f(1)(x)=cos(ax+b)×ddx(ax+b){f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)
f(1)(x)=cos(ax+b)×a\Rightarrow {f^{\left( 1 \right)}}\left( x \right) = \cos \left( {ax + b} \right) \times a
Now we know cosθ=sin(π2+θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right)
f(1)(x)=asin(ax+b+π2) (ii)\Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\sin \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)

Now let us consider f(1)(x){f^{\left( 1 \right)}}\left( x \right) and differentiating it, we will get
f(2)(x)=ddx(asin(ax+b+π2))×ddx(ax+b+π2){f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\sin \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)
f(2)(x)=acos(ax+b+π2)×a\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right) \times a
Therefore, on solving we get
f(2)(x)=a2cos(ax+b+π2)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2}} \right)
Now transforming in the form of first derivative by using cosθ=sin(π2+θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right) , we can write
f(2)(x)=a2sin(ax+b+π2+π2)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)
f(2)(x)=a2sin(ax+b+2π2) (iii)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)

Now similarly let us consider f(2)(x){f^{\left( 2 \right)}}\left( x \right) and differentiating it, we will get
f(3)(x)=ddx(a2sin(ax+b+2π2))×ddx(ax+b+2π2){f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)
f(3)(x)=a2cos(ax+b+2π2)×a\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a
Therefore, on solving we have
f(3)(x)=a3cos(ax+b+2π2)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)

Now transforming in the form of first derivative by using cosθ=sin(π2+θ)\cos \theta = \sin \left( {\dfrac{\pi }{2} + \theta } \right) , we can write
f(3)(x)=a3sin(ax+b+2π2+π2)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)
f(3)(x)=a3sin(ax+b+3π2) (iv)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\sin \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)
and so on….
Therefore, by observing equation (ii),(iii)\left( {ii} \right),\left( {iii} \right) and (iv)\left( {iv} \right) we get the nth derivative as,
f(n)(x)=ansin(ax+b+nπ2){f^{\left( n \right)}}\left( x \right) = {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)
which is the required answer.

Therefore, the formula for the nth derivative of sin(ax+b)\sin \left( {ax + b} \right) is ansin(ax+b+nπ2) {a^n}\sin \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right).

Now we will do same for second part:
The given function is
f(x)=cos(ax+b ) (i)f\left( x \right) = \cos \left( {ax + b{\text{ }}} \right){\text{ }} - - - \left( i \right)
Now in order to find the nth derivative, we will find the first few derivatives. For this we shall consider 1st, 2nd, and 3rd derivatives of the given function.
Now we know that
ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x

Therefore, on differentiating equation (i)\left( i \right) we get
f(1)(x)=sin(ax+b)×ddx(ax+b){f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right)
f(1)(x)=sin(ax+b)×a\Rightarrow {f^{\left( 1 \right)}}\left( x \right) = - \sin \left( {ax + b} \right) \times a
Now we know sinθ=cos(π2+θ) - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right)
f(1)(x)=acos(ax+b+π2) (ii)\Rightarrow {f^{\left( 1 \right)}}\left( x \right) = a\cos \left( {ax + b + \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {ii} \right)
Now let us consider f(1)(x){f^{\left( 1 \right)}}\left( x \right) and differentiating it, we will get
f(2)(x)=ddx(acos(ax+b+π2))×ddx(ax+b+π2){f^{\left( 2 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {a\cos \left( {ax + b + \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + \dfrac{\pi }{2}} \right)
f(2)(x)=asin(ax+b+π2)×a\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - a\sin \left( {ax + b + \dfrac{\pi }{2}} \right) \times a

Therefore, on solving we get
f(2)(x)=a2sin(ax+b+π2)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + \dfrac{\pi }{2}} \right)
Now transforming in the form of first derivative by using sinθ=cos(π2+θ) - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right) , we can write
f(2)(x)=a2cos(ax+b+π2+π2)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)
f(2)(x)=a2cos(ax+b+2π2) (iii)\Rightarrow {f^{\left( 2 \right)}}\left( x \right) = {a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iii} \right)

Now similarly let us consider f(2)(x){f^{\left( 2 \right)}}\left( x \right) and differentiating it, we will get
f(3)(x)=ddx(a2cos(ax+b+2π2))×ddx(ax+b+2π2){f^{\left( 3 \right)}}\left( x \right) = \dfrac{d}{{dx}}\left( {{a^2}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)} \right) \times \dfrac{d}{{dx}}\left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)
f(3)(x)=a2sin(ax+b+2π2)×a\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^2}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right) \times a
Therefore, on solving we have
f(3)(x)=a3sin(ax+b+2π2)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = - {a^3}\sin \left( {ax + b + 2 \cdot \dfrac{\pi }{2}} \right)

Now transforming in the form of first derivative by using sinθ=cos(π2+θ) - \sin \theta = \cos \left( {\dfrac{\pi }{2} + \theta } \right) , we can write
f(3)(x)=a3cos(ax+b+2π2+π2)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 2 \cdot \dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)
f(3)(x)=a3cos(ax+b+3π2) (iv)\Rightarrow {f^{\left( 3 \right)}}\left( x \right) = {a^3}\cos \left( {ax + b + 3 \cdot \dfrac{\pi }{2}} \right){\text{ }} - - - \left( {iv} \right)
and so on….
Therefore, by observing equation (ii),(iii)\left( {ii} \right),\left( {iii} \right) and (iv)\left( {iv} \right) we get the nth derivative as,
f(n)(x)=ancos(ax+b+nπ2){f^{\left( n \right)}}\left( x \right) = {a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right)

Therefore, the formula for the nth derivative of cos(ax+b)\cos \left( {ax + b} \right) is ancos(ax+b+nπ2){a^n}\cos \left( {ax + b + n \cdot \dfrac{\pi }{2}} \right).

Note: In this type of questions, the key point is that we have to simplify at least 3-4 differentiation of the given function to get some kind of variation. Also note that the main key point is expressing all the derivatives in the form of a given function. In this way we can observe the similarity between the derivatives in order to find the nth derivative.