Solveeit Logo

Question

Question: Find a, b, c so that the coefficient of \({{x}^{n}}\) in the expansion of \(\dfrac{a+bx+c{{x}^{2}}}{...

Find a, b, c so that the coefficient of xn{{x}^{n}} in the expansion of a+bx+cx2(1x)3\dfrac{a+bx+c{{x}^{2}}}{{{\left( 1-x \right)}^{3}}} may be n2+1{{n}^{2}}+1.

Explanation

Solution

Hint: First of all write the expression given above a+bx+cx2(1x)3\dfrac{a+bx+c{{x}^{2}}}{{{\left( 1-x \right)}^{3}}} as (a+bx+cx2)(1x)3\left( a+bx+c{{x}^{2}} \right){{\left( 1-x \right)}^{-3}}. We know that the coefficient of xr{{x}^{r}} in the expansion of (1x)n{{\left( 1-x \right)}^{-n}} is n+r1Cr{}^{n+r-1}{{C}_{r}} so using this formula in finding the coefficient of xr{{x}^{r}} in the expansion of (1x)3{{\left( 1-x \right)}^{-3}} we get, 3+r1Cr{}^{3+r-1}{{C}_{r}} or 2+rCr{}^{2+r}{{C}_{r}}. Now, find the coefficient of xn{{x}^{n}} in a(1x)3+bx(1x)3+cx2(1x)3a{{\left( 1-x \right)}^{-3}}+bx{{\left( 1-x \right)}^{-3}}+c{{x}^{2}}{{\left( 1-x \right)}^{-3}} by using different value of r in the coefficient of xr{{x}^{r}} in such a way that we get the power of x as n. After finding the coefficient of xn{{x}^{n}} equate it to n2+1{{n}^{2}}+1 and then compare both the sides of the equation to get the value of a, b and c.

Complete step-by-step solution -
The expression given in the question of which expansion we have to found is:
a+bx+cx2(1x)3\dfrac{a+bx+c{{x}^{2}}}{{{\left( 1-x \right)}^{3}}}
Rewriting the above expression we get,
(a+bx+cx2)(1x)3 a(1x)3+bx(1x)3+cx2(1x)3 \begin{aligned} & \left( a+bx+c{{x}^{2}} \right){{\left( 1-x \right)}^{-3}} \\\ & \Rightarrow a{{\left( 1-x \right)}^{-3}}+bx{{\left( 1-x \right)}^{-3}}+c{{x}^{2}}{{\left( 1-x \right)}^{-3}} \\\ \end{aligned}
We know that the formula for the coefficient of xr{{x}^{r}} in the expansion of (1x)n{{\left( 1-x \right)}^{-n}} is:
n+r1Cr{}^{n+r-1}{{C}_{r}}
Using the above formula we can find the coefficient of xr{{x}^{r}} in the expansion of (1x)3{{\left( 1-x \right)}^{-3}} as follows:
3+r1Cr =2+rCr \begin{aligned} & {}^{3+r-1}{{C}_{r}} \\\ & ={}^{2+r}{{C}_{r}} \\\ \end{aligned}
Now, we are going to find the coefficient of xn{{x}^{n}} in a(1x)3+bx(1x)3+cx2(1x)3a{{\left( 1-x \right)}^{-3}}+bx{{\left( 1-x \right)}^{-3}}+c{{x}^{2}}{{\left( 1-x \right)}^{-3}} using the above formula we get,
We are breaking the expression a(1x)3+bx(1x)3+cx2(1x)3a{{\left( 1-x \right)}^{-3}}+bx{{\left( 1-x \right)}^{-3}}+c{{x}^{2}}{{\left( 1-x \right)}^{-3}} in three parts as follows:
a(1x)3,bx(1x)3,cx2(1x)3a{{\left( 1-x \right)}^{-3}},bx{{\left( 1-x \right)}^{-3}},c{{x}^{2}}{{\left( 1-x \right)}^{-3}}
Then finding the coefficient of xn{{x}^{n}} in each of the above expressions and then adding them.
The coefficient of xn{{x}^{n}} in a(1x)3a{{\left( 1-x \right)}^{-3}} is:
a(2+nCn)a\left( {}^{2+n}{{C}_{n}} \right) …………… Eq. (1)
The coefficient of xn{{x}^{n}} in bx(1x)3bx{{\left( 1-x \right)}^{-3}} is:
In the expression bx(1x)3bx{{\left( 1-x \right)}^{-3}} we have already had x so we have to find the coefficient of xn1{{x}^{n-1}} in (1x)3{{\left( 1-x \right)}^{-3}} to get the coefficient of xn{{x}^{n}} which is:
b(2+rCr) =b(2+n1Cn1) =b(n+1Cn1).............Eq.(2) \begin{aligned} & b\left( {}^{2+r}{{C}_{r}} \right) \\\ & =b\left( {}^{2+n-1}{{C}_{n-1}} \right) \\\ & =b\left( {}^{n+1}{{C}_{n-1}} \right).............Eq.(2) \\\ \end{aligned}
As cx2(1x)3c{{x}^{2}}{{\left( 1-x \right)}^{-3}} contains x2{{x}^{2}} so to get the coefficient of xn{{x}^{n}} we need to find the coefficient of xn2{{x}^{n-2}} in (1x)3{{\left( 1-x \right)}^{-3}} which we have shown below:
c(2+rCr)c\left( {}^{2+r}{{C}_{r}} \right)
Substituting r as n – 2 in the above expression we get,
c(2+n2Cn2) =c(nCn2)...........Eq.(3) \begin{aligned} & c\left( {}^{2+n-2}{{C}_{n-2}} \right) \\\ & =c\left( {}^{n}{{C}_{n-2}} \right)...........Eq.(3) \\\ \end{aligned}
Adding eq. (1, 2 & 3) we get,
a(2+nCn)+b(n+1Cn1)+c(nCn2)a\left( {}^{2+n}{{C}_{n}} \right)+b\left( {}^{n+1}{{C}_{n-1}} \right)+c\left( {}^{n}{{C}_{n-2}} \right)
Using the below relation nCr=nCnr{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}} in the above expression we get,
a(n+2C2)+b(n+1C2)+c(nC2)a\left( {}^{n+2}{{C}_{2}} \right)+b\left( {}^{n+1}{{C}_{2}} \right)+c\left( {}^{n}{{C}_{2}} \right)
We know that:
nCr=n(n1)(n2)......(n(r1))r!{}^{n}{{C}_{r}}=\dfrac{n\left( n-1 \right)\left( n-2 \right)......\left( n-\left( r-1 \right) \right)}{r!}
Using this relation in a(n+2C2)+b(n+1C2)+c(nC2)a\left( {}^{n+2}{{C}_{2}} \right)+b\left( {}^{n+1}{{C}_{2}} \right)+c\left( {}^{n}{{C}_{2}} \right) we get,
a((n+2)(n+1)2!)+b((n+1)(n)2!)+c(n(n1)2!) =a(n+2)(n+1)+b(n+1)(n)+cn(n1)2.1 =a(n2+3n+2)+b(n2+n)+cn2cn2 \begin{aligned} & a\left( \dfrac{\left( n+2 \right)\left( n+1 \right)}{2!} \right)+b\left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)+c\left( \dfrac{n\left( n-1 \right)}{2!} \right) \\\ & =\dfrac{a\left( n+2 \right)\left( n+1 \right)+b\left( n+1 \right)\left( n \right)+cn\left( n-1 \right)}{2.1} \\\ & =\dfrac{a\left( {{n}^{2}}+3n+2 \right)+b\left( {{n}^{2}}+n \right)+c{{n}^{2}}-cn}{2} \\\ \end{aligned}
Separating the coefficient of n2{{n}^{2}} and the coefficient of n in the above expression we get,
n2(a+b+c)+n(3a+bc)+2a2 =n2(a+b+c)+n(3a+bc)2+a \begin{aligned} & \dfrac{{{n}^{2}}\left( a+b+c \right)+n\left( 3a+b-c \right)+2a}{2} \\\ & =\dfrac{{{n}^{2}}\left( a+b+c \right)+n\left( 3a+b-c \right)}{2}+a \\\ \end{aligned}
Now, it is given that the coefficient of xn{{x}^{n}} in the expansion of a+bx+cx2(1x)3\dfrac{a+bx+c{{x}^{2}}}{{{\left( 1-x \right)}^{3}}} is equal to n2+1{{n}^{2}}+1 so equating the above expression to n2+1{{n}^{2}}+1 we get,
n2(a+b+c)+n(3a+bc)2+a=n2+1\dfrac{{{n}^{2}}\left( a+b+c \right)+n\left( 3a+b-c \right)}{2}+a={{n}^{2}}+1
Comparing the coefficient of n2,n{{n}^{2}},n and the terms which are independent of n on both the sides we get,
a+b+c2=1......Eq.(4) 3a+bc2=0.......Eq.(5) a=1.......Eq.(6) \begin{aligned} & \dfrac{a+b+c}{2}=1......Eq.(4) \\\ & \dfrac{3a+b-c}{2}=0.......Eq.(5) \\\ & a=1.......Eq.(6) \\\ \end{aligned}
From eq. (6) we have got the value of “a” as 1. Substituting the value of “a” in eq. (4) and eq. (5) we get,
1+b+c2=1\dfrac{1+b+c}{2}=1
Cross – multiplying both the sides we get,
1+b+c=2 b+c=1........Eq.(7) \begin{aligned} & 1+b+c=2 \\\ & \Rightarrow b+c=1........Eq.(7) \\\ \end{aligned}
3(1)+bc2=0\dfrac{3\left( 1 \right)+b-c}{2}=0
Cross – multiplying on both the sides of the above equation we get,
3+bc=0 bc=3......Eq.(8) \begin{aligned} & 3+b-c=0 \\\ & \Rightarrow b-c=-3......Eq.(8) \\\ \end{aligned}
Adding eq. (7) and eq. (8) we get,
 b+c=1 +bc=32b=2 \begin{aligned} & \text{ }b+c=1 \\\ & \dfrac{+b-c=-3}{2b=-2} \\\ \end{aligned}
Dividing 2 on both the sides we get,
b=1b=-1
Substituting the above value of b in eq. (7) we get,
b+c=1 1+c=1 c=2 \begin{aligned} & b+c=1 \\\ & \Rightarrow -1+c=1 \\\ & \Rightarrow c=2 \\\ \end{aligned}
From the above solution, we have got the value of a, b and c as 1, -1 and 2 respectively.

Note: In the first reading of the question, you might have thought that the expression is not containing any value of xn{{x}^{n}} so from where this coefficient of xn{{x}^{n}} will come. The whole story lies in the expansion of (1x)3{{\left( 1-x \right)}^{-3}} if you know this binomial expansion then you can easily solve the question so you must know the expansion of (1x)n{{\left( 1-x \right)}^{-n}}.