Solveeit Logo

Question

Mathematics Question on Binomial Theorem for Positive Integral Indices

Find (a+b)4(ab)4(a + b)^4 - (a - b)^4. Hence, evaluate (3+2)4(32)4(\sqrt3 + \sqrt2)^4 - (\sqrt3 - \sqrt2)^4.

Answer

Using Binomial Theorem, the expressions, (a+b)4(a+b)^4 and (ab)4(a - b)^4, can be expanded as

(a+b)4=4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4(a+b)^4 = ^4C_0 a^4+ ^4C_1a^3b+ ^4C_2a^2b^2 + ^4C_3ab^3 + ^4C_4b^4
(ab)4=4C0a44C1a3b+4C2a2b24C3ab3+4C4b4(a-b)^4 = ^4C_0 a^4- ^4C_1a^3b+ ^4C_2a^2b^2 - ^4C_3ab^3 + ^4C_4b^4
(a+b)4(ab)4=4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4(a+b)^4-(a - b)^4 = ^4C_0 a^4+ ^4C_1a^3b+ ^4C_2a^2b^2 + ^4C_3ab^3 + ^4C_4b^4 - [4C0a44C1a3b+4C2a2b24C3ab3+4C4b4][^4C_0 a^4- 4C_1a^3b+ ^4C_2a^2b^2 - ^4C_3ab^3 + ^4C_4b^4\,]
=2(4C1a3b+4C3ab3)2(^4C_1 a^3b+ ^4C_3ab^3)
=2(4a3b+4ab3)2(4a^3b+4ab^3)
=8ab(a2+b2)8ab (a^2+b^2)

By putting a=3a = \sqrt3 and b=2b = \sqrt2, we obtain
(3+2)4(32)4=8(3)(2)[(3)2+(2)2]=8(6)[3+2]=406(\sqrt3 +\sqrt2)^4 - (\sqrt3 −\sqrt2)^4 = 8(\sqrt3)(\sqrt2)[{(\sqrt3)^2+(\sqrt2)^2]} =8(\sqrt6) [3+2]=40\sqrt6

Hence,(3+2)4(32)4=406.\text{Hence,} \,(\sqrt3 + \sqrt2)^4 - (\sqrt3 - \sqrt2)^4=40\sqrt6.