Question
Mathematics Question on Binomial Theorem for Positive Integral Indices
Find (a+b)4−(a−b)4. Hence, evaluate (3+2)4−(3−2)4.
Answer
Using Binomial Theorem, the expressions, (a+b)4 and (a−b)4, can be expanded as
(a+b)4=4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4
(a−b)4=4C0a4−4C1a3b+4C2a2b2−4C3ab3+4C4b4
∴(a+b)4−(a−b)4=4C0a4+4C1a3b+4C2a2b2+4C3ab3+4C4b4 − [4C0a4−4C1a3b+4C2a2b2−4C3ab3+4C4b4]
=2(4C1a3b+4C3ab3)
=2(4a3b+4ab3)
=8ab(a2+b2)
By putting a=3 and b=2, we obtain
(3+2)4−(3−2)4=8(3)(2)[(3)2+(2)2]=8(6)[3+2]=406
Hence,(3+2)4−(3−2)4=406.