Solveeit Logo

Question

Mathematics Question on Axiomatic Approach to Probability

Fill in the blanks in following table:

| P(A)| P(B)| P(A∩B)| P(A∪B)
---|---|---|---|---
(i)| 13\frac{1}{3}| 15\frac{1}{5}| 115\frac{1}{15}| …
(ii)| 0.35| ….| 0.25| 0.6
(iii)| 0.5| 0.35| ….| 0.7

Answer

(i) Here,P(A)=13,P(B)=15,P(AB)=115P(A)=\frac{1}{3},P(B)=\frac{1}{5},P(A∩B)=\frac{1}{15}

We know that P(AB)=P(A)+P(B)P(AB)P(A∪B)=P(A)+P(B)-P(A∩B)

P(AUB)=13+15115=5+3115=715∴P(AUB)=\frac{1}{3}+\frac{1}{5}-\frac{1}{15}=5+3-\frac{1}{15}=\frac{7}{15}

(ii) Here, P(A)=0.35,P(AB)=0.25,P(AUB)=0.6P(A) = 0.35, P(A ∩ B) = 0.25, P(A U B) = 0.6
We know that P(AUB)=P(A)+P(B)\-P(AB)P(A U B) = P(A) + P(B) \- P(A ∩ B)

0.6=0.35+P(B)\-0.25∴0.6 = 0.35 + P(B) \- 0.25
P(B)=0.6\-0.35+0.25⇒ P(B) = 0.6 \- 0.35 + 0.25
P(B)=0.5⇒ P(B) = 0.5

(iii) Here, P(A)=0.5,P(B)=0.35,P(AUB)=0.7P(A) = 0.5, P(B) = 0.35, P(A U B) = 0.7
We know that P(AUB)=P(A)+P(B)P(AB)P(A U B) = P(A) + P(B) -P(A ∩ B)

0.7=0.5+0.35P(AB)∴0.7 = 0.5 + 0.35- P(A ∩ B)
P(AB)=0.5+0.35\-0.7⇒ P(A \cap B) = 0.5 + 0.35 \- 0.7
P(AB)=0.15⇒ P(A ∩ B) = 0.15