Question
Mathematics Question on Axiomatic Approach to Probability
Fill in the blanks in following table:
| P(A)| P(B)| P(A∩B)| P(A∪B)
---|---|---|---|---
(i)| 31| 51| 151| …
(ii)| 0.35| ….| 0.25| 0.6
(iii)| 0.5| 0.35| ….| 0.7
Answer
(i) Here,P(A)=31,P(B)=51,P(A∩B)=151
We know that P(A∪B)=P(A)+P(B)−P(A∩B)
∴P(AUB)=31+51−151=5+3−151=157
(ii) Here, P(A)=0.35,P(A∩B)=0.25,P(AUB)=0.6
We know that P(AUB)=P(A)+P(B)\-P(A∩B)
∴0.6=0.35+P(B)\-0.25
⇒P(B)=0.6\-0.35+0.25
⇒P(B)=0.5
(iii) Here, P(A)=0.5,P(B)=0.35,P(AUB)=0.7
We know that P(AUB)=P(A)+P(B)−P(A∩B)
∴0.7=0.5+0.35−P(A∩B)
⇒P(A∩B)=0.5+0.35\-0.7
⇒P(A∩B)=0.15