Solveeit Logo

Question

Mathematics Question on Conic sections

Fill in the blanks. (i) The length of the latus rectum of the hyperbola x216y29=1\frac{x^{2}}{16}-\frac{y^{2}}{9}=1 is . (ii) The equations of the hyperbola with vertices (±2,0)\left(\pm 2, 0\right), foci (±3,0) \left(\pm3, 0\right) is . (iii) If the distance between the foci of a hyperbola is 1616 and its eccentricity is 22, then equation of the hyperbola is .

A

a

B

b

C

c

D

d

Answer

c

Explanation

Solution

(i)\left(i\right) Given equation of hyperbola is x216y29=1\frac{x^{2}}{16}-\frac{y^{2}}{9}=1 Now, a2=16a^{2} = 16 a=4\Rightarrow a=4 and b2=9b^{2}=9 b=3 \Rightarrow b=3 Length of latus rectum =2b2a=2×94=92=\frac{2b^{2}}{a}=\frac{2\times9}{4}=\frac{9}{2}\cdot (ii)\left(ii\right) Vertices are (±2,0)\left(\pm2,0\right) which lie on xx-axis. So the equation of hyperbola is x2a2y2b2=1\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 Now, vertices are (±2,0)\left(\pm2,0\right) a=2\Rightarrow a=2 Foci are (±3,0)\left(\pm3,0\right) ae=3\Rightarrow ae=3 e=32\Rightarrow e=\frac{3}{2} We know that b=ae21b=a\sqrt{e^{2}-1} b=2941=252=5 \Rightarrow b=2\sqrt{\frac{9}{4}}-1=2\frac{\sqrt{5}}{2}=\sqrt{5} Thus required equation of hyperbola is x2(2)2y2(5)2=1\frac{x^{2}}{\left(2\right)^{2}}-\frac{y^{2}}{\left(\sqrt{5}\right)^{2}}=1 x24y25=1\Rightarrow \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 (iii)\left(iii\right) Since distance between the foci is 1616 2ae16\Rightarrow 2ae - 16 ae=8\Rightarrow ae=8 a=4[e=2]\Rightarrow a=4 \, \left[\because\,e=2\right] Now, b2=a2(e21)=(4)2[(2)21]=16×3=48b^{2} =a^{2} \left(e^{2}-1\right)=\left(4\right)^{2} \left[\left(2\right)^{2}-1\right]=16\times3=48 Hence, the equation of hyperbola is x216y248=1\frac{x^{2}}{16}-\frac{y^{2}}{48}=1 3x2y2=48\Rightarrow 3x^{2}-y^{2}=48