Question
Question: ملفان متجاوران (X ، Y)، والشكل البياني يمثل العلاقة بين القوة الدافعة الكهربية المستحثة (emf2) في ال...
ملفان متجاوران (X ، Y)، والشكل البياني يمثل العلاقة بين القوة الدافعة الكهربية المستحثة (emf2) في الملف (Y) ومعدل التغير في شدة التيار (ΔtΔI1) المار في الملف (X).
ما قيمة معامل الحث المتبادل بين الملفين؟

0.5 H
1 H
1.5 H
1.5 H
Solution
The induced electromotive force (emf) in a coil due to the changing current in an adjacent coil is given by the formula:
emf2=−MΔtΔI1
where emf2 is the induced EMF in the second coil, M is the mutual inductance between the coils, and ΔtΔI1 is the rate of change of current in the first coil.
The negative sign indicates the direction of the induced EMF (Lenz's Law), but for calculating the magnitude of mutual inductance, we consider:
∣emf2∣=MΔtΔI1
Therefore, the mutual inductance M can be found as the ratio of the induced EMF to the rate of change of current:
M=∣ΔtΔI1∣∣emf2∣
The given graph plots emf2 (on the y-axis) against ΔtΔI1 (on the x-axis). The graph is a straight line passing through the origin, indicating a direct proportionality. The slope of this line represents the mutual inductance M.
To find the slope, we can pick any convenient point on the line. Let's choose the point where the rate of change of current is 8 A.s−1. From the graph, at ΔtΔI1=8 A.s−1, the induced EMF emf2=12 V.
Using the formula for mutual inductance:
M=ΔtΔI1emf2=8 A.s−112 V
M=1.5 H
The value of the mutual inductance between the two coils is 1.5 H.