Solveeit Logo

Question

Question: Find tension in the thread when the extreme discs are about to collide....

Find tension in the thread when the extreme discs are about to collide.

Answer

4 N

Explanation

Solution

1. System Description: The system consists of a central mass MM and two identical outer masses mm, connected by threads of length ll. The central mass MM is given an initial velocity uu perpendicular to the threads on a smooth horizontal table. We need to find the tension in the threads when the outer masses are about to collide.

2. Coordinate System and Constraints: Let the initial position of the central mass MM be at the origin (0,0)(0,0). The initial positions of the outer masses are (l,0)(-l, 0) and (l,0)(l, 0). Let the positions at time tt be M(0,yM)M(0, y_M), m1(x,y)m_1(-x, y), and m2(x,y)m_2(x, y). The constraint of constant thread length gives: x2+(yMy)2=l2x^2 + (y_M - y)^2 = l^2. The outer masses collide when x=0x=0.

3. Conservation of Momentum: In the y-direction, the initial momentum is MuM u. At any time tt, the y-momentum is MvMy+mvm1y+mvm2yM v_{My} + m v_{m_1y} + m v_{m_2y}. Since vm1y=vm2y=y˙v_{m_1y} = v_{m_2y} = \dot{y} and vMy=y˙Mv_{My} = \dot{y}_M, we have: Mu=My˙M+2my˙M u = M \dot{y}_M + 2m \dot{y}.

4. Conservation of Energy: The initial kinetic energy is 12Mu2\frac{1}{2} M u^2. At time tt, the kinetic energy is 12MvM2+12mvm12+12mvm22\frac{1}{2} M v_M^2 + \frac{1}{2} m v_{m_1}^2 + \frac{1}{2} m v_{m_2}^2. Since the motion is along the y-axis at the initial moment and later, vM2=y˙M2v_M^2 = \dot{y}_M^2. The velocities of the outer masses are vm12=(x˙)2+y˙2=x˙2+y˙2v_{m_1}^2 = (-\dot{x})^2 + \dot{y}^2 = \dot{x}^2 + \dot{y}^2 and vm22=x˙2+y˙2v_{m_2}^2 = \dot{x}^2 + \dot{y}^2. So, 12Mu2=12My˙M2+2×12m(x˙2+y˙2)\frac{1}{2} M u^2 = \frac{1}{2} M \dot{y}_M^2 + 2 \times \frac{1}{2} m (\dot{x}^2 + \dot{y}^2), which simplifies to Mu2=My˙M2+2m(x˙2+y˙2)M u^2 = M \dot{y}_M^2 + 2m (\dot{x}^2 + \dot{y}^2).

5. Constraint Differentiation: Differentiating x2+(yMy)2=l2x^2 + (y_M - y)^2 = l^2 with respect to time: 2xx˙+2(yMy)(y˙My˙)=0    xx˙+(yMy)(y˙My˙)=02x \dot{x} + 2(y_M - y)(\dot{y}_M - \dot{y}) = 0 \implies x \dot{x} + (y_M - y)(\dot{y}_M - \dot{y}) = 0.

6. Condition at Collision: Just before collision, x=0x=0. From the constraint equation, (yMy)2=l2(y_M - y)^2 = l^2, so yMy=l|y_M - y| = l. Since the initial velocity is in the positive y-direction, yM>yy_M > y, thus yMy=l0y_M - y = l \neq 0. The differentiated constraint equation at x=0x=0 becomes (yMy)(y˙My˙)=0(y_M - y)(\dot{y}_M - \dot{y}) = 0, which implies y˙My˙=0\dot{y}_M - \dot{y} = 0, so y˙M=y˙\dot{y}_M = \dot{y}.

7. Velocities at Collision: Substitute y˙M=y˙\dot{y}_M = \dot{y} into the momentum equation: Mu=My˙+2my˙=(M+2m)y˙    y˙=y˙M=MuM+2mM u = M \dot{y} + 2m \dot{y} = (M + 2m) \dot{y} \implies \dot{y} = \dot{y}_M = \frac{M u}{M + 2m}. Substitute y˙M=y˙\dot{y}_M = \dot{y} into the energy equation: Mu2=My˙2+2m(x˙2+y˙2)=(M+2m)y˙2+2mx˙2M u^2 = M \dot{y}^2 + 2m (\dot{x}^2 + \dot{y}^2) = (M + 2m) \dot{y}^2 + 2m \dot{x}^2. Mu2=(M+2m)(MuM+2m)2+2mx˙2M u^2 = (M + 2m) \left(\frac{M u}{M + 2m}\right)^2 + 2m \dot{x}^2. Mu2=M2u2M+2m+2mx˙2M u^2 = \frac{M^2 u^2}{M + 2m} + 2m \dot{x}^2. 2mx˙2=Mu2M2u2M+2m=Mu2(M+2mMM+2m)=2mMu2M+2m2m \dot{x}^2 = M u^2 - \frac{M^2 u^2}{M + 2m} = M u^2 \left(\frac{M + 2m - M}{M + 2m}\right) = \frac{2m M u^2}{M + 2m}. x˙2=Mu2M+2m\dot{x}^2 = \frac{M u^2}{M + 2m}.

8. Tension Calculation: Consider the motion of an outer mass mm relative to the central mass MM. Just before collision, x=0x=0, so the thread is along the y-axis. The relative velocity of mm with respect to MM is vm/M=vmvM=(x˙,y˙)(0,y˙M)=(x˙,0)\vec{v}_{m/M} = \vec{v}_m - \vec{v}_M = (-\dot{x}, \dot{y}) - (0, \dot{y}_M) = (-\dot{x}, 0) since y˙=y˙M\dot{y} = \dot{y}_M. The tangential velocity magnitude is vtan=x˙=Mu2M+2mv_{tan} = |\dot{x}| = \sqrt{\frac{M u^2}{M + 2m}}. The tension TT provides the centripetal force for this relative motion: T=mvtan2l=mx˙2l=m1l(Mu2M+2m)T = m \frac{v_{tan}^2}{l} = m \frac{\dot{x}^2}{l} = m \frac{1}{l} \left(\frac{M u^2}{M + 2m}\right).

9. Substituting Given Values: u=2u = 2 m/s, M=2M = 2 kg, m=1m = 1 kg, l=0.5l = 0.5 m. T=(1 kg)×10.5 m×(2 kg)×(2 m/s)22 kg+2×(1 kg)T = (1 \text{ kg}) \times \frac{1}{0.5 \text{ m}} \times \frac{(2 \text{ kg}) \times (2 \text{ m/s})^2}{2 \text{ kg} + 2 \times (1 \text{ kg})}. T=2×2×42+2=2×84=2×2=4T = 2 \times \frac{2 \times 4}{2 + 2} = 2 \times \frac{8}{4} = 2 \times 2 = 4 N.