Solveeit Logo

Question

Question: The above apparatus consists of three temperature jacketed 12.315 litre bulbs connected by stop cock...

The above apparatus consists of three temperature jacketed 12.315 litre bulbs connected by stop cocks. Bulbs 'A' consist of NH3(g)NH_{3(g)}, CO2(g)CO_{2(g)} & N2(g)N_{2(g)} at 27°C27°C and a total pressure of 60 atm. Bulb 'B' and 'C' are empty and maintained at temperature of 73°C-73°C and 173°C-173°C respectively. Initially stop-cocks are closed and volume of the connecting lines is zero.

Given:

(i) NH3(g)NH_{3(g)} liquifies at 20°C-20°C, CO2(g)CO_{2(g)} liquifies at 80°C-80°C and N2(g)N_{2(g)} liquifies at 180°C-180°C.

(ii) Vapour pressure of NH3(l)NH_{3(l)} at 73°C-73°C = 1 atm

(iii) Vapour pressure of NH3(l)NH_{3(l)} at 173°C-173°C is negligible

(iv) Vapour pressure of CO2(l)CO_{2(l)} is negligible

(v) On opening stop-cock (i) only, the pressure in containers becomes 17 atm and, on opening both stop-cocks pressure decreases to 4 atm

what is the value of (nNH3+nCO2nN2)(n_{NH_3}+n_{CO_2}-n_{N_2}) in the initial mixture ?

Answer

8

Explanation

Solution

Let V=12.315V = 12.315 litre be the volume of each bulb.

Initial state: Bulb A has NH3NH_3, CO2CO_2, N2N_2 at TA=27C=300T_A = 27^\circ C = 300 K and total pressure PA=60P_A = 60 atm. Bulb B is at TB=73C=200T_B = -73^\circ C = 200 K, Bulb C is at TC=173C=100T_C = -173^\circ C = 100 K. Bulbs B and C are initially empty.

Let nNH3n_{NH_3}, nCO2n_{CO_2}, nN2n_{N_2} be the initial moles of NH3NH_3, CO2CO_2, and N2N_2 in bulb A. Initial total moles in bulb A: nA=nNH3+nCO2+nN2n_A = n_{NH_3} + n_{CO_2} + n_{N_2}. Using the ideal gas law for bulb A initially: PAV=nARTAP_A V = n_A R T_A. 60×12.315=nAR×30060 \times 12.315 = n_A R \times 300. nAR=60×12.315300=12.3155=2.463n_A R = \frac{60 \times 12.315}{300} = \frac{12.315}{5} = 2.463. So, nNH3R+nCO2R+nN2R=2.463n_{NH_3} R + n_{CO_2} R + n_{N_2} R = 2.463.

Case 1: Stop-cock (i) is opened. Bulbs A (300 K) and B (200 K) are connected. The total volume is VA+VB=2VV_A + V_B = 2V. Liquefaction points: NH3NH_3 at 253 K, CO2CO_2 at 193 K, N2N_2 at 93 K. At TB=200T_B = 200 K: NH3NH_3 (liquefies at 253 K): 200<253200 < 253, so NH3NH_3 can condense. Vapour pressure of NH3(l)NH_3(l) at 200 K is 1 atm. CO2CO_2 (liquefies at 193 K): 200>193200 > 193, so CO2CO_2 remains as gas. Vapour pressure of CO2(l)CO_2(l) is negligible (meaning if liquid is present, gas pressure is negligible), but at 200 K it's a gas. N2N_2 (liquefies at 93 K): 200>93200 > 93, so N2N_2 remains as gas.

After opening stop-cock (i), the pressure in containers becomes P1=17P_1 = 17 atm. In bulb A (300 K), all gases are in gaseous state. In bulb B (200 K), CO2CO_2 and N2N_2 are in gaseous state. NH3NH_3 can be in gaseous and liquid state. Let PNH3P'_{NH_3}, PCO2P'_{CO_2}, PN2P'_{N_2} be the partial pressures of the gases in the gaseous phase. The total pressure is P1=PNH3+PCO2+PN2=17P_1 = P'_{NH_3} + P'_{CO_2} + P'_{N_2} = 17. If NH3NH_3 condenses in bulb B, its partial pressure in the gas phase is equal to the vapour pressure at 200 K, which is 1 atm. So PNH3=1P'_{NH_3} = 1 atm. Then PCO2+PN2=171=16P'_{CO_2} + P'_{N_2} = 17 - 1 = 16 atm.

Assuming PNH3=1P'_{NH_3} = 1 atm. Total moles of NH3NH_3: nNH3=nNH3,A+nNH3,B+nNH3,liquidn_{NH_3} = n'_{NH_3, A} + n'_{NH_3, B} + n'_{NH_3, liquid}. nNH3,A=PNH3VRTA=1×VR×300n'_{NH_3, A} = \frac{P'_{NH_3} V}{R T_A} = \frac{1 \times V}{R \times 300}. nNH3,B=PNH3VRTB=1×VR×200n'_{NH_3, B} = \frac{P'_{NH_3} V}{R T_B} = \frac{1 \times V}{R \times 200}. Moles of NH3NH_3 in gas phase after opening (i): nNH3,gas=nNH3,A+nNH3,B=VR(1300+1200)=VR5600=V120Rn'_{NH_3, gas} = n'_{NH_3, A} + n'_{NH_3, B} = \frac{V}{R} (\frac{1}{300} + \frac{1}{200}) = \frac{V}{R} \frac{5}{600} = \frac{V}{120R}. Total initial moles of NH3NH_3 is nNH3=PNH3,AVRTAn_{NH_3} = \frac{P_{NH_3, A} V}{R T_A}. If PNH3,A>TA120=300120=2.5P_{NH_3, A} > \frac{T_A}{120} = \frac{300}{120} = 2.5, then condensation occurs.

Total moles of CO2CO_2: nCO2=nCO2,A+nCO2,B=PCO2VRTA+PCO2VRTB=PCO2VR(1300+1200)=PCO2V120Rn_{CO_2} = n'_{CO_2, A} + n'_{CO_2, B} = \frac{P'_{CO_2} V}{R T_A} + \frac{P'_{CO_2} V}{R T_B} = \frac{P'_{CO_2} V}{R} (\frac{1}{300} + \frac{1}{200}) = \frac{P'_{CO_2} V}{120R}. Total moles of N2N_2: nN2=nN2,A+nN2,B=PN2VRTA+PN2VRTB=PN2VR(1300+1200)=PN2V120Rn_{N_2} = n'_{N_2, A} + n'_{N_2, B} = \frac{P'_{N_2} V}{R T_A} + \frac{P'_{N_2} V}{R T_B} = \frac{P'_{N_2} V}{R} (\frac{1}{300} + \frac{1}{200}) = \frac{P'_{N_2} V}{120R}.

From the initial state, nCO2=PCO2,AVRTA=PCO2,AV300Rn_{CO_2} = \frac{P_{CO_2, A} V}{R T_A} = \frac{P_{CO_2, A} V}{300R}. So, PCO2,AV300R=PCO2V120R    PCO2,A=300120PCO2=2.5PCO2\frac{P_{CO_2, A} V}{300R} = \frac{P'_{CO_2} V}{120R} \implies P_{CO_2, A} = \frac{300}{120} P'_{CO_2} = 2.5 P'_{CO_2}. Similarly, PN2,A=2.5PN2P_{N_2, A} = 2.5 P'_{N_2}. PCO2,A+PN2,A=2.5(PCO2+PN2)=2.5×16=40P_{CO_2, A} + P_{N_2, A} = 2.5 (P'_{CO_2} + P'_{N_2}) = 2.5 \times 16 = 40 atm. Initial partial pressure of NH3NH_3 in A: PNH3,A=60(PCO2,A+PN2,A)=6040=20P_{NH_3, A} = 60 - (P_{CO_2, A} + P_{N_2, A}) = 60 - 40 = 20 atm. Since PNH3,A=20>2.5P_{NH_3, A} = 20 > 2.5, condensation of NH3NH_3 occurs in bulb B, so our assumption PNH3=1P'_{NH_3} = 1 atm is correct.

Initial moles of each gas: nNH3=PNH3,AVRTA=20V300R=V15Rn_{NH_3} = \frac{P_{NH_3, A} V}{R T_A} = \frac{20 V}{300 R} = \frac{V}{15 R}. nCO2=PCO2,AVRTA=2.5PCO2V300R=PCO2V120Rn_{CO_2} = \frac{P_{CO_2, A} V}{R T_A} = \frac{2.5 P'_{CO_2} V}{300 R} = \frac{P'_{CO_2} V}{120 R}. nN2=PN2,AVRTA=2.5PN2V300R=PN2V120Rn_{N_2} = \frac{P_{N_2, A} V}{R T_A} = \frac{2.5 P'_{N_2} V}{300 R} = \frac{P'_{N_2} V}{120 R}. nCO2+nN2=(PCO2+PN2)V120R=16V120R=2V15Rn_{CO_2} + n_{N_2} = \frac{(P'_{CO_2} + P'_{N_2}) V}{120 R} = \frac{16 V}{120 R} = \frac{2 V}{15 R}.

Check total initial moles: nA=nNH3+nCO2+nN2=V15R+2V15R=3V15R=V5Rn_A = n_{NH_3} + n_{CO_2} + n_{N_2} = \frac{V}{15 R} + \frac{2 V}{15 R} = \frac{3 V}{15 R} = \frac{V}{5 R}. From 60V=nARTA=nAR×30060 V = n_A R T_A = n_A R \times 300, nAR=60V300=V5n_A R = \frac{60 V}{300} = \frac{V}{5}. So nA=V5Rn_A = \frac{V}{5R}. This matches.

Case 2: Both stop-cocks (i) and (ii) are opened. Bulbs A (300 K), B (200 K), and C (100 K) are connected. The total volume is VA+VB+VC=3VV_A + V_B + V_C = 3V. The pressure decreases to P2=4P_2 = 4 atm. At TC=100T_C = 100 K: NH3NH_3 (liquefies at 253 K): 100<253100 < 253, can condense. Vapour pressure of NH3(l)NH_3(l) at 100 K is negligible. CO2CO_2 (liquefies at 193 K): 100<193100 < 193, can condense. Vapour pressure of CO2(l)CO_2(l) is negligible. N2N_2 (liquefies at 93 K): 100>93100 > 93, remains as gas.

In the final state, the partial pressures of NH3NH_3 and CO2CO_2 in the gas phase are negligible (close to 0) if liquid is present. Since the total pressure is 4 atm, and the partial pressures of NH3NH_3 and CO2CO_2 are negligible, the partial pressure of N2N_2 must be approximately 4 atm. Let PNH3P''_{NH_3}, PCO2P''_{CO_2}, PN2P''_{N_2} be the partial pressures in the gas phase. PNH3+PCO2+PN2=4P''_{NH_3} + P''_{CO_2} + P''_{N_2} = 4. Given that vapour pressure of NH3(l)NH_3(l) at 100 K is negligible, PNH30P''_{NH_3} \approx 0. Given that vapour pressure of CO2(l)CO_2(l) is negligible, PCO20P''_{CO_2} \approx 0. So, PN24P''_{N_2} \approx 4 atm.

Let's check if N2N_2 remains as gas. The partial pressure of N2N_2 is 4 atm. The temperature is 100 K. The liquefaction point is 93 K. Since the lowest temperature is 100 K > 93 K, N2N_2 remains as gas in all bulbs.

Total moles of N2N_2: nN2=nN2,A+nN2,B+nN2,Cn_{N_2} = n''_{N_2, A} + n''_{N_2, B} + n''_{N_2, C}. nN2,A=PN2VRTA=4VR×300n''_{N_2, A} = \frac{P''_{N_2} V}{R T_A} = \frac{4 V}{R \times 300}. nN2,B=PN2VRTB=4VR×200n''_{N_2, B} = \frac{P''_{N_2} V}{R T_B} = \frac{4 V}{R \times 200}. nN2,C=PN2VRTC=4VR×100n''_{N_2, C} = \frac{P''_{N_2} V}{R T_C} = \frac{4 V}{R \times 100}. nN2=4VR(1300+1200+1100)=4VR(2+3+6600)=4VR11600=44V600R=11V150Rn_{N_2} = \frac{4 V}{R} (\frac{1}{300} + \frac{1}{200} + \frac{1}{100}) = \frac{4 V}{R} (\frac{2 + 3 + 6}{600}) = \frac{4 V}{R} \frac{11}{600} = \frac{44 V}{600 R} = \frac{11 V}{150 R}.

We had nN2=2.5PN2V300R=PN2V120Rn_{N_2} = \frac{2.5 P'_{N_2} V}{300 R} = \frac{P'_{N_2} V}{120 R}. So, PN2V120R=11V150R    PN2=11×120150=11×1215=11×45=8.8\frac{P'_{N_2} V}{120 R} = \frac{11 V}{150 R} \implies P'_{N_2} = \frac{11 \times 120}{150} = \frac{11 \times 12}{15} = \frac{11 \times 4}{5} = 8.8 atm. Then PCO2=16PN2=168.8=7.2P'_{CO_2} = 16 - P'_{N_2} = 16 - 8.8 = 7.2 atm.

Now we can calculate the initial moles. nNH3=V15Rn_{NH_3} = \frac{V}{15 R}. nCO2=PCO2V120R=7.2V120R=72V1200R=6V100R=3V50Rn_{CO_2} = \frac{P'_{CO_2} V}{120 R} = \frac{7.2 V}{120 R} = \frac{72 V}{1200 R} = \frac{6 V}{100 R} = \frac{3 V}{50 R}. nN2=PN2V120R=8.8V120R=88V1200R=22V300R=11V150Rn_{N_2} = \frac{P'_{N_2} V}{120 R} = \frac{8.8 V}{120 R} = \frac{88 V}{1200 R} = \frac{22 V}{300 R} = \frac{11 V}{150 R}.

We need to find the value of (nNH3+nCO2nN2)(n_{NH_3} + n_{CO_2} - n_{N_2}). (nNH3+nCO2nN2)=V15R+3V50R11V150R(n_{NH_3} + n_{CO_2} - n_{N_2}) = \frac{V}{15 R} + \frac{3 V}{50 R} - \frac{11 V}{150 R}. Find a common denominator, which is 150. =10V150R+9V150R11V150R=(10+911)V150R=8V150R=4V75R= \frac{10 V}{150 R} + \frac{9 V}{150 R} - \frac{11 V}{150 R} = \frac{(10 + 9 - 11) V}{150 R} = \frac{8 V}{150 R} = \frac{4 V}{75 R}.

We know nAR=2.463n_A R = 2.463, so R=2.463nAR = \frac{2.463}{n_A}. Also nA=V5Rn_A = \frac{V}{5R}. R=2.463(V5R)=2.463×5RVR = \frac{2.463}{(\frac{V}{5R})} = \frac{2.463 \times 5 R}{V}. 1=2.463×5V    V=12.3151 = \frac{2.463 \times 5}{V} \implies V = 12.315. This confirms the value of VV. R=2.463nAR = \frac{2.463}{n_A}. We also have nA=V5Rn_A = \frac{V}{5R}.

Let's express the result in terms of V/RV/R. VR=12.315R\frac{V}{R} = \frac{12.315}{R}. Using R=0.0821R=0.0821, V/R=12.315/0.0821150V/R = 12.315/0.0821 \approx 150. Using R=0.082R=0.082, V/R=12.315/0.082150.18V/R = 12.315/0.082 \approx 150.18. Let's use V/R=150V/R = 150 as a round number implied by the problem. nNH3=15015=10n_{NH_3} = \frac{150}{15} = 10. nCO2=3×15050=3×3=9n_{CO_2} = \frac{3 \times 150}{50} = 3 \times 3 = 9. nN2=11×150150=11n_{N_2} = \frac{11 \times 150}{150} = 11. Check total moles: 10+9+11=3010 + 9 + 11 = 30. nA=V5R=1505=30n_A = \frac{V}{5R} = \frac{150}{5} = 30. This matches.

The value of (nNH3+nCO2nN2)=10+911=1911=8(n_{NH_3} + n_{CO_2} - n_{N_2}) = 10 + 9 - 11 = 19 - 11 = 8.

Final check of assumptions: In Case 1, PNH3=1P'_{NH_3} = 1. nNH3,gas=1×V120R=150120=1.25n'_{NH_3, gas} = \frac{1 \times V}{120R} = \frac{150}{120} = 1.25. Initial moles nNH3=10n_{NH_3} = 10. Since 10>1.2510 > 1.25, condensation occurs in B. In Case 2, PNH3=0P''_{NH_3} = 0. nNH3,gas=0×VR(1300+1200+1100)=0n''_{NH_3, gas} = \frac{0 \times V}{R} (\frac{1}{300} + \frac{1}{200} + \frac{1}{100}) = 0. This implies all NH3NH_3 is condensed. Total moles of NH3NH_3 is 10. This is possible if the partial pressure is negligible. In Case 2, PCO2=0P''_{CO_2} = 0. nCO2,gas=0n''_{CO_2, gas} = 0. This implies all CO2CO_2 is condensed. Total moles of CO2CO_2 is 9. This is possible if the partial pressure is negligible. In Case 2, PN2=4P''_{N_2} = 4. nN2,gas=4V150R=4×150150=4n''_{N_2, gas} = \frac{4 V}{150 R} = \frac{4 \times 150}{150} = 4. Total moles of N2N_2 is 11. So, 114=711 - 4 = 7 moles of N2N_2 are not in the gas phase. This is a contradiction, as N2N_2 should remain as gas at 100 K.

Let's re-evaluate the partial pressure of N2N_2 in Case 2. Total moles of N2N_2 is nN2=11n_{N_2} = 11. After opening both stop-cocks, N2N_2 is distributed in A, B, and C as gas. nN2=nN2,A+nN2,B+nN2,C=PN2VRTA+PN2VRTB+PN2VRTCn_{N_2} = n''_{N_2, A} + n''_{N_2, B} + n''_{N_2, C} = \frac{P''_{N_2} V}{R T_A} + \frac{P''_{N_2} V}{R T_B} + \frac{P''_{N_2} V}{R T_C}. 11=PN2VR(1300+1200+1100)=PN2VR1160011 = \frac{P''_{N_2} V}{R} (\frac{1}{300} + \frac{1}{200} + \frac{1}{100}) = \frac{P''_{N_2} V}{R} \frac{11}{600}. 11=PN2VR11600=PN2×150×11600=PN2×11411 = P''_{N_2} \frac{V}{R} \frac{11}{600} = P''_{N_2} \times 150 \times \frac{11}{600} = P''_{N_2} \times \frac{11}{4}. PN2=4P''_{N_2} = 4 atm. This is consistent with the total pressure being 4 atm if NH3NH_3 and CO2CO_2 partial pressures are negligible.

Let's re-evaluate the partial pressure of NH3NH_3 in Case 2. Total moles of NH3NH_3 is nNH3=10n_{NH_3} = 10. Partial pressure of NH3NH_3 in gas phase is PNH3P''_{NH_3}. Moles of NH3NH_3 in gas phase: nNH3,gas=PNH3VR(1300+1200+1100)=PNH3VR11600n''_{NH_3, gas} = \frac{P''_{NH_3} V}{R} (\frac{1}{300} + \frac{1}{200} + \frac{1}{100}) = \frac{P''_{NH_3} V}{R} \frac{11}{600}. nNH3,gas=PNH3×150×11600=PNH3×114n''_{NH_3, gas} = P''_{NH_3} \times 150 \times \frac{11}{600} = P''_{NH_3} \times \frac{11}{4}. Given vapour pressure of NH3(l)NH_3(l) at 100 K is negligible, PNH3P''_{NH_3} should be negligible if liquid is present. If PNH30P''_{NH_3} \approx 0, then nNH3,gas0n''_{NH_3, gas} \approx 0. This means almost all NH3NH_3 is condensed. This is consistent with nNH3=10n_{NH_3} = 10.

Let's re-evaluate the partial pressure of CO2CO_2 in Case 2. Total moles of CO2CO_2 is nCO2=9n_{CO_2} = 9. Partial pressure of CO2CO_2 in gas phase is PCO2P''_{CO_2}. Moles of CO2CO_2 in gas phase: nCO2,gas=PCO2VR(1300+1200+1100)=PCO2VR11600=PCO2×114n''_{CO_2, gas} = \frac{P''_{CO_2} V}{R} (\frac{1}{300} + \frac{1}{200} + \frac{1}{100}) = \frac{P''_{CO_2} V}{R} \frac{11}{600} = P''_{CO_2} \times \frac{11}{4}. Given vapour pressure of CO2(l)CO_2(l) is negligible, PCO2P''_{CO_2} should be negligible if liquid is present. If PCO20P''_{CO_2} \approx 0, then nCO2,gas0n''_{CO_2, gas} \approx 0. This means almost all CO2CO_2 is condensed. This is consistent with nCO2=9n_{CO_2} = 9.

So, the assumption that partial pressures of NH3NH_3 and CO2CO_2 are negligible in Case 2 is consistent with the calculated initial moles.

The value of (nNH3+nCO2nN2)=10+911=8(n_{NH_3} + n_{CO_2} - n_{N_2}) = 10 + 9 - 11 = 8.

The final answer is 8\boxed{8}.

Explanation:

  1. Calculate the initial total moles of gas in bulb A using the ideal gas law.
  2. Analyze the state of each gas when stop-cock (i) is opened, considering liquefaction points and vapour pressures at the given temperatures. Determine which gases remain as gas and which may condense.
  3. Use the given pressure after opening stop-cock (i) and the conditions in bulbs A and B to set up equations relating the initial moles and partial pressures. Assume condensation of NH3NH_3 occurs and verify this assumption.
  4. Analyze the state of each gas when both stop-cocks are opened, considering liquefaction points and vapour pressures at the given temperatures. Determine which gases remain as gas and which condense.
  5. Use the given pressure after opening both stop-cocks and the conditions in bulbs A, B, and C to set up equations relating the initial moles and partial pressures. Assume condensation of NH3NH_3 and CO2CO_2 occurs and verify this assumption.
  6. Solve the system of equations to find the initial moles of each gas.
  7. Calculate the required value (nNH3+nCO2nN2)(n_{NH_3} + n_{CO_2} - n_{N_2}).

The final answer is 8\boxed{8}.