Solveeit Logo

Question

Question: T₁ 2Kg T₂ 3Kg T₃ 5Kg 2m/s²...

T₁

2Kg

T₂

3Kg

T₃

5Kg

2m/s²

Answer

T₁ = 120 N, T₂ = 96 N, T₃ = 60 N

Explanation

Solution

The problem involves three masses suspended by strings, accelerating upwards. We need to find the tension in each string (T₁, T₂, T₃).

Given:

  • Masses: m1=2 Kgm_1 = 2 \text{ Kg}, m2=3 Kgm_2 = 3 \text{ Kg}, m3=5 Kgm_3 = 5 \text{ Kg}
  • Acceleration of the system: a=2 m/s2a = 2 \text{ m/s}^2 (upwards)
  • Assume acceleration due to gravity: g=10 m/s2g = 10 \text{ m/s}^2

We will apply Newton's second law (Fnet=maF_{net} = ma) to different sections of the system.

1. Calculate T₃ (Tension between 3 Kg and 5 Kg masses): Consider the lowest mass, m3=5 Kgm_3 = 5 \text{ Kg}. Forces acting on m3m_3:

  • Tension T3T_3 acting upwards.
  • Weight m3gm_3g acting downwards. Since the mass is accelerating upwards, the net force is upwards.

T3m3g=m3aT_3 - m_3g = m_3a T3=m3(g+a)T_3 = m_3(g + a) Substitute the values: T3=5 Kg×(10 m/s2+2 m/s2)T_3 = 5 \text{ Kg} \times (10 \text{ m/s}^2 + 2 \text{ m/s}^2) T3=5 Kg×12 m/s2T_3 = 5 \text{ Kg} \times 12 \text{ m/s}^2 T3=60 NT_3 = 60 \text{ N}

2. Calculate T₂ (Tension between 2 Kg and 3 Kg masses): Consider the combined system of masses (m2+m3m_2 + m_3). Total mass = m2+m3=3 Kg+5 Kg=8 Kgm_2 + m_3 = 3 \text{ Kg} + 5 \text{ Kg} = 8 \text{ Kg}. Forces acting on this combined system:

  • Tension T2T_2 acting upwards.
  • Total weight (m2+m3)g(m_2 + m_3)g acting downwards. Since the system is accelerating upwards:

T2(m2+m3)g=(m2+m3)aT_2 - (m_2 + m_3)g = (m_2 + m_3)a T2=(m2+m3)(g+a)T_2 = (m_2 + m_3)(g + a) Substitute the values: T2=(3 Kg+5 Kg)×(10 m/s2+2 m/s2)T_2 = (3 \text{ Kg} + 5 \text{ Kg}) \times (10 \text{ m/s}^2 + 2 \text{ m/s}^2) T2=8 Kg×12 m/s2T_2 = 8 \text{ Kg} \times 12 \text{ m/s}^2 T2=96 NT_2 = 96 \text{ N}

3. Calculate T₁ (Tension at the top string): Consider the entire system of masses (m1+m2+m3m_1 + m_2 + m_3). Total mass = m1+m2+m3=2 Kg+3 Kg+5 Kg=10 Kgm_1 + m_2 + m_3 = 2 \text{ Kg} + 3 \text{ Kg} + 5 \text{ Kg} = 10 \text{ Kg}. Forces acting on the entire system:

  • Tension T1T_1 acting upwards.
  • Total weight (m1+m2+m3)g(m_1 + m_2 + m_3)g acting downwards. Since the entire system is accelerating upwards:

T1(m1+m2+m3)g=(m1+m2+m3)aT_1 - (m_1 + m_2 + m_3)g = (m_1 + m_2 + m_3)a T1=(m1+m2+m3)(g+a)T_1 = (m_1 + m_2 + m_3)(g + a) Substitute the values: T1=(2 Kg+3 Kg+5 Kg)×(10 m/s2+2 m/s2)T_1 = (2 \text{ Kg} + 3 \text{ Kg} + 5 \text{ Kg}) \times (10 \text{ m/s}^2 + 2 \text{ m/s}^2) T1=10 Kg×12 m/s2T_1 = 10 \text{ Kg} \times 12 \text{ m/s}^2 T1=120 NT_1 = 120 \text{ N}

Summary of Tensions:

  • T1=120 NT_1 = 120 \text{ N}
  • T2=96 NT_2 = 96 \text{ N}
  • T3=60 NT_3 = 60 \text{ N}

Solution:

  1. Tension T₃: Consider the 5 Kg mass. T3m3g=m3a    T3=m3(g+a)=5(10+2)=5×12=60 NT_3 - m_3g = m_3a \implies T_3 = m_3(g+a) = 5(10+2) = 5 \times 12 = 60 \text{ N}.
  2. Tension T₂: Consider the (3 Kg + 5 Kg) system. T2(m2+m3)g=(m2+m3)a    T2=(m2+m3)(g+a)=(3+5)(10+2)=8×12=96 NT_2 - (m_2+m_3)g = (m_2+m_3)a \implies T_2 = (m_2+m_3)(g+a) = (3+5)(10+2) = 8 \times 12 = 96 \text{ N}.
  3. Tension T₁: Consider the (2 Kg + 3 Kg + 5 Kg) system. T1(m1+m2+m3)g=(m1+m2+m3)a    T1=(m1+m2+m3)(g+a)=(2+3+5)(10+2)=10×12=120 NT_1 - (m_1+m_2+m_3)g = (m_1+m_2+m_3)a \implies T_1 = (m_1+m_2+m_3)(g+a) = (2+3+5)(10+2) = 10 \times 12 = 120 \text{ N}.