Solveeit Logo

Question

Question: Suppose the function $f(x) - f(2x)$ has the derivative 5 at $x = 1$ and derivative '7' at $x = 2$, t...

Suppose the function f(x)f(2x)f(x) - f(2x) has the derivative 5 at x=1x = 1 and derivative '7' at x=2x = 2, then the derivative of f(x)f(4x)10xf(x)-f(4x)-10x at x=1x = 1 is equal to

Answer

9

Explanation

Solution

Let g(x)=f(x)f(2x)g(x) = f(x) - f(2x). We are given g(1)=5g'(1) = 5 and g(2)=7g'(2) = 7. The derivative of g(x)g(x) is g(x)=f(x)2f(2x)g'(x) = f'(x) - 2f'(2x). So, f(1)2f(2)=5f'(1) - 2f'(2) = 5 (1) and f(2)2f(4)=7f'(2) - 2f'(4) = 7 (2).

Let h(x)=f(x)f(4x)10xh(x) = f(x) - f(4x) - 10x. We want to find h(1)h'(1). The derivative of h(x)h(x) is h(x)=f(x)4f(4x)10h'(x) = f'(x) - 4f'(4x) - 10. So, h(1)=f(1)4f(4)10h'(1) = f'(1) - 4f'(4) - 10.

From (1), f(1)=5+2f(2)f'(1) = 5 + 2f'(2). From (2), 2f(4)=f(2)72f'(4) = f'(2) - 7, so 4f(4)=2(f(2)7)=2f(2)144f'(4) = 2(f'(2) - 7) = 2f'(2) - 14.

Substitute these into the expression for h(1)h'(1): h(1)=(5+2f(2))(2f(2)14)10h'(1) = (5 + 2f'(2)) - (2f'(2) - 14) - 10 h(1)=5+2f(2)2f(2)+1410h'(1) = 5 + 2f'(2) - 2f'(2) + 14 - 10 h(1)=5+1410=9h'(1) = 5 + 14 - 10 = 9.