Solveeit Logo

Question

Question: Ten moles of a gas (molar heat capacity for constant volume process is $C_V$) is enclosed in rigid h...

Ten moles of a gas (molar heat capacity for constant volume process is CVC_V) is enclosed in rigid hollow sphere of inner radius aa and outer radius 5a5a and its temperature is 3T03T_0 at t=0t=0. Heat is conducted out to the environment (temperature T0T_0) through the sphere material material of conductivity KK and negligible heat capacity. At t=t1t=t_1 (second) the temperature of the gas is found to be 2T02T_0 then find the value of t1t_1. [All quantities are expressed in SI units and take CV×(m2)=2πKaC_V \times (m2) = 2\pi Ka]

Answer

2 ln 2

Explanation

Solution

The thermal resistance of the spherical shell is Rth=14πK(1a15a)=15πKaR_{th} = \frac{1}{4\pi K} (\frac{1}{a} - \frac{1}{5a}) = \frac{1}{5\pi K a}. The rate of heat loss is dQdt=T(t)T0Rth=5πKa(T(t)T0)\frac{dQ}{dt} = - \frac{T(t) - T_0}{R_{th}} = -5\pi K a (T(t) - T_0). Also, dQdt=nCVdTdt\frac{dQ}{dt} = n C_V \frac{dT}{dt}. Thus, nCVdTdt=5πKa(T(t)T0)n C_V \frac{dT}{dt} = -5\pi K a (T(t) - T_0). Let y=T(t)T0y = T(t) - T_0. Then dydt=dTdt\frac{dy}{dt} = \frac{dT}{dt}. nCVdydt=5πKayn C_V \frac{dy}{dt} = -5\pi K a y. 3T0T02T0T0dyy=0t15πKanCVdt\int_{3T_0-T_0}^{2T_0-T_0} \frac{dy}{y} = - \int_{0}^{t_1} \frac{5\pi K a}{n C_V} dt. ln(2T0)ln(T0)=5πKanCVt1\ln(2T_0) - \ln(T_0) = - \frac{5\pi K a}{n C_V} t_1. ln(2)=5πKanCVt1\ln(2) = \frac{5\pi K a}{n C_V} t_1. t1=nCV5πKaln(2)t_1 = \frac{n C_V}{5\pi K a} \ln(2). Given n=10n=10 and CV×2=2πKaC_V \times 2 = 2\pi Ka, so CV=πKaC_V = \pi Ka. t1=10(πKa)5πKaln(2)=2ln(2)t_1 = \frac{10 (\pi Ka)}{5\pi K a} \ln(2) = 2 \ln(2).