Solveeit Logo

Question

Question: Figure shows two coherent microwave sources $S_1$ and $S_2$ emitting waves of wavelength $\lambda$ a...

Figure shows two coherent microwave sources S1S_1 and S2S_2 emitting waves of wavelength λ\lambda and separated by a distance 3λ3\lambda. The minimum non-zero value of y for point P to be an intensity maximum is (D >> λ\lambda)

A

D

B

3D\sqrt{3}D

C

52D\frac{\sqrt{5}}{2}D

D

None of these

Answer

52D\frac{\sqrt{5}}{2}D

Explanation

Solution

The path difference between the waves from S1S_1 and S2S_2 to point P is given by Δr=r1r2\Delta r = r_1 - r_2, where r1r_1 is the distance from S1S_1 to P and r2r_2 is the distance from S2S_2 to P.

Let S2S_2 be at the origin (0, 0). Then S1S_1 is at (3λ,0)(-3\lambda, 0) and P is at (D,y)(D, y). r1=(D(3λ))2+(y0)2=(D+3λ)2+y2r_1 = \sqrt{(D - (-3\lambda))^2 + (y - 0)^2} = \sqrt{(D + 3\lambda)^2 + y^2} r2=(D0)2+(y0)2=D2+y2r_2 = \sqrt{(D - 0)^2 + (y - 0)^2} = \sqrt{D^2 + y^2}

For constructive interference (intensity maximum), the path difference must be an integer multiple of the wavelength: r1r2=nλr_1 - r_2 = n\lambda, where n=0,1,2,...n = 0, 1, 2, .... (D+3λ)2+y2D2+y2=nλ\sqrt{(D + 3\lambda)^2 + y^2} - \sqrt{D^2 + y^2} = n\lambda (D+3λ)2+y2=D2+y2+nλ\sqrt{(D + 3\lambda)^2 + y^2} = \sqrt{D^2 + y^2} + n\lambda

Square both sides: (D+3λ)2+y2=(D2+y2+nλ)2(D + 3\lambda)^2 + y^2 = (\sqrt{D^2 + y^2} + n\lambda)^2 D2+6Dλ+9λ2+y2=(D2+y2)+(nλ)2+2nλD2+y2D^2 + 6D\lambda + 9\lambda^2 + y^2 = (D^2 + y^2) + (n\lambda)^2 + 2n\lambda \sqrt{D^2 + y^2} D2+6Dλ+9λ2+y2=D2+y2+n2λ2+2nλD2+y2D^2 + 6D\lambda + 9\lambda^2 + y^2 = D^2 + y^2 + n^2\lambda^2 + 2n\lambda \sqrt{D^2 + y^2} 6Dλ+9λ2n2λ2=2nλD2+y26D\lambda + 9\lambda^2 - n^2\lambda^2 = 2n\lambda \sqrt{D^2 + y^2}

Divide by λ\lambda (assuming λ0\lambda \ne 0): 6D+9λn2λ=2nD2+y26D + 9\lambda - n^2\lambda = 2n \sqrt{D^2 + y^2} 6D+(9n2)λ=2nD2+y26D + (9 - n^2)\lambda = 2n \sqrt{D^2 + y^2}

Square both sides: (6D+(9n2)λ)2=(2nD2+y2)2(6D + (9 - n^2)\lambda)^2 = (2n \sqrt{D^2 + y^2})^2 36D2+12D(9n2)λ+(9n2)2λ2=4n2(D2+y2)36D^2 + 12D(9 - n^2)\lambda + (9 - n^2)^2\lambda^2 = 4n^2 (D^2 + y^2) 36D2+12D(9n2)λ+(9n2)2λ2=4n2D2+4n2y236D^2 + 12D(9 - n^2)\lambda + (9 - n^2)^2\lambda^2 = 4n^2D^2 + 4n^2y^2 4n2y2=36D24n2D2+12D(9n2)λ+(9n2)2λ24n^2y^2 = 36D^2 - 4n^2D^2 + 12D(9 - n^2)\lambda + (9 - n^2)^2\lambda^2 4n2y2=(364n2)D2+12D(9n2)λ+(9n2)2λ24n^2y^2 = (36 - 4n^2)D^2 + 12D(9 - n^2)\lambda + (9 - n^2)^2\lambda^2

We are given D>>λD >> \lambda. We are looking for the minimum non-zero value of y. Let's analyze the equation for different values of n. For n=0, 0=36D2+108Dλ+81λ2=(6D+9λ)20 = 36D^2 + 108D\lambda + 81\lambda^2 = (6D + 9\lambda)^2. This implies 6D+9λ=06D + 9\lambda = 0, which is not possible for positive D and λ\lambda. So n=0 does not give a solution for y.

For n=1: 4(1)2y2=(364(1)2)D2+12D(912)λ+(912)2λ24(1)^2y^2 = (36 - 4(1)^2)D^2 + 12D(9 - 1^2)\lambda + (9 - 1^2)^2\lambda^2 4y2=(364)D2+12D(8)λ+(8)2λ24y^2 = (36 - 4)D^2 + 12D(8)\lambda + (8)^2\lambda^2 4y2=32D2+96Dλ+64λ24y^2 = 32D^2 + 96D\lambda + 64\lambda^2 y2=8D2+24Dλ+16λ2y^2 = 8D^2 + 24D\lambda + 16\lambda^2 y=8D2+24Dλ+16λ2y = \sqrt{8D^2 + 24D\lambda + 16\lambda^2}. Since D>>λD >> \lambda, y8D2=8D=22Dy \approx \sqrt{8D^2} = \sqrt{8}D = 2\sqrt{2}D.

For n=2: 4(2)2y2=(364(2)2)D2+12D(922)λ+(922)2λ24(2)^2y^2 = (36 - 4(2)^2)D^2 + 12D(9 - 2^2)\lambda + (9 - 2^2)^2\lambda^2 16y2=(3616)D2+12D(5)λ+(5)2λ216y^2 = (36 - 16)D^2 + 12D(5)\lambda + (5)^2\lambda^2 16y2=20D2+60Dλ+25λ216y^2 = 20D^2 + 60D\lambda + 25\lambda^2 y2=2016D2+6016Dλ+2516λ2y^2 = \frac{20}{16}D^2 + \frac{60}{16}D\lambda + \frac{25}{16}\lambda^2 y2=54D2+154Dλ+2516λ2y^2 = \frac{5}{4}D^2 + \frac{15}{4}D\lambda + \frac{25}{16}\lambda^2 y=54D2+154Dλ+2516λ2y = \sqrt{\frac{5}{4}D^2 + \frac{15}{4}D\lambda + \frac{25}{16}\lambda^2}. Since D>>λD >> \lambda, y54D2=54D=52Dy \approx \sqrt{\frac{5}{4}D^2} = \sqrt{\frac{5}{4}}D = \frac{\sqrt{5}}{2}D.

For n=3: 4(3)2y2=(364(3)2)D2+12D(932)λ+(932)2λ24(3)^2y^2 = (36 - 4(3)^2)D^2 + 12D(9 - 3^2)\lambda + (9 - 3^2)^2\lambda^2 36y2=(3636)D2+12D(0)λ+(0)2λ236y^2 = (36 - 36)D^2 + 12D(0)\lambda + (0)^2\lambda^2 36y2=036y^2 = 0 y=0y = 0. This is a possible solution for n=3, but we are looking for a non-zero value of y.

For n=4: 4(4)2y2=(364(4)2)D2+12D(942)λ+(942)2λ24(4)^2y^2 = (36 - 4(4)^2)D^2 + 12D(9 - 4^2)\lambda + (9 - 4^2)^2\lambda^2 64y2=(3664)D2+12D(916)λ+(916)2λ264y^2 = (36 - 64)D^2 + 12D(9 - 16)\lambda + (9 - 16)^2\lambda^2 64y2=28D284Dλ+49λ264y^2 = -28D^2 - 84D\lambda + 49\lambda^2 Since D>>λD >> \lambda, the term 28D2-28D^2 dominates the right side, which is negative. Thus, y2<0y^2 < 0, which means there is no real solution for y when n=4n=4. In general, for n3n \ge 3, 364n2036 - 4n^2 \le 0. If 364n2<036 - 4n^2 < 0, then the term (364n2)D2(36 - 4n^2)D^2 is negative and proportional to D2D^2. The other terms are proportional to DλD\lambda or λ2\lambda^2. Since D>>λD >> \lambda, the term proportional to D2D^2 will dominate. For y2y^2 to be non-negative, we need (364n2)D2+12D(9n2)λ+(9n2)2λ20(36 - 4n^2)D^2 + 12D(9 - n^2)\lambda + (9 - n^2)^2\lambda^2 \ge 0. If 364n2<036 - 4n^2 < 0, i.e., n2>9n^2 > 9, then for large D, the term (364n2)D2(36 - 4n^2)D^2 is a large negative number, while the other terms are of lower order in D. So for n4n \ge 4, y2y^2 will be negative. Thus, the possible positive integer values of n are 1 and 2.

For n=1, y22D2.828Dy \approx 2\sqrt{2}D \approx 2.828D. For n=2, y52D1.118Dy \approx \frac{\sqrt{5}}{2}D \approx 1.118D. The minimum non-zero value of y occurs for n=2, and is approximately 52D\frac{\sqrt{5}}{2}D.

Let's check the exact values. For n=1, y=8D2+24Dλ+16λ2y = \sqrt{8D^2 + 24D\lambda + 16\lambda^2}. For n=2, y=54D2+154Dλ+2516λ2y = \sqrt{\frac{5}{4}D^2 + \frac{15}{4}D\lambda + \frac{25}{16}\lambda^2}. Since D>>λD >> \lambda, the terms with λ\lambda are small compared to the term with D2D^2. So the minimum value of y is indeed approximately 52D\frac{\sqrt{5}}{2}D. Comparing the options, option (c) is 52D\frac{\sqrt{5}}{2}D.