Solveeit Logo

Question

Physics Question on Electric charges and fields

Figure shows three particles with charges q1=2Q,q2=2Qq_{1}=2 Q, q_{2}=-2 Q and q3=4Qq_{3}=-4 Q, each a distance dd from the origin. Find the net electric field E\vec{E} at the origin.

A

2.56Q4πε0d2\frac{2.56 \,Q}{4 \pi \varepsilon_{0} d^{2}} towards + ve x-axis

B

6.932Q4πε0d2\frac{6.932 \,Q}{4 \pi \varepsilon_{0} d^{2}} towards + ve x-axis

C

6.93Q4πε0d2\frac{6.93 Q}{4 \pi \varepsilon_{0} d^{2}} towards - ve x-axis

D

Zero

Answer

6.932Q4πε0d2\frac{6.932 \,Q}{4 \pi \varepsilon_{0} d^{2}} towards + ve x-axis

Explanation

Solution

The given, q1=2Q,q2=2Q,q3=4Qq_{1}=2 Q, q_{2}=-2 Q, q_{3}=-4 Q
The net electric field EE at the origin
E=(14πε0q1d2+14πε0q2d2+14πε0q3d2)cosθE=\left(\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{3}}{d^{2}}\right) \cos \theta
=(14πε02Qd2+14πε02Qd2+14πε04Qd2)cosθ=\left(\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 Q}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 Q}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{4 Q}{d^{2}}\right) \cos \theta
=14πε02×4Qd2×32=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \times 4 Q}{d^{2}} \times \frac{\sqrt{3}}{2}
=14πε08×1.732Qd2×2=14πε06.928Qd2=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{8 \times 1.732 Q}{d^{2} \times 2}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{6.928 Q}{d^{2}}
=6.932Q4πε0d2=\frac{6.932 Q}{4 \pi \varepsilon_{0} \cdot d^{2}} towards ++ ve xx-axis.