Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

Figure shows an object ABAB placed in front of two thin coaxial lenses 11 and 22 with focal lengths 24cm24\, cm and 9.0cm9.0 \,cm , respectively. The object is 6.0cm6.0\, cm from the lens I and the lens separation is L=10cmL = 10\, cm . Where does the system of two lenses produce an image of the object ABAB ?

A

+18cm+ 18 \, cm

B

- 18cm18 \,cm

C

+24cm+ 24 \, cm

D

24cm-24 \, cm

Answer

+18cm+ 18 \, cm

Explanation

Solution

For first lens f1=24.0cmf_{1}=24.0\,cm
u1=6.0cmu_{1}=6.0\,cm
To find v1v_{1}
Using lens formula 1v1u1=1f1\frac{1}{v}-\frac{1}{u_{1}}=\frac{1}{f_{1}}
1v=1f1+1u1=12416\frac{1}{v}=\frac{1}{f_{1}}+\frac{1}{u_{1}}=\frac{1}{24}-\frac{1}{6}
1v=1424=324\frac{1}{v}=\frac{1-4}{24}=-\frac{3}{24}
v=8cmv=-8\,cm
\therefore For second lens
u2=8cm+(10cm)=18cmu_{2}=-8\,cm+\left(-10\,cm\right)=-18\,cm
f2=9cmf_{2}=9\,cm
Again using lens formula
1v21u2=1f2\frac{1}{v_{2}}-\frac{1}{u_{2}}=\frac{1}{f_{2}}
1v=1f2+1u2=19118\frac{1}{v}=\frac{1}{f_{2}}+\frac{1}{u_{2}}=\frac{1}{9}-\frac{1}{18}
=2118=118=\frac{2-1}{18}=\frac{1}{18}
v=18cm\Rightarrow v=18\,cm
\therefore Final image will be formed at 18cm18\, cm to the right of second lens