Solveeit Logo

Question

Question: Figure shows a two branched parallel circuit with $R_A = 10 \Omega$, $L = \frac{\sqrt{3}}{10} H$, $R...

Figure shows a two branched parallel circuit with RA=10ΩR_A = 10 \Omega, L=310HL = \frac{\sqrt{3}}{10} H, RB=20ΩR_B = 20 \Omega and C=32mHC = \frac{\sqrt{3}}{2} mH. Current in LRAL-R_A is I1I_1 and in CRBC-R_B is I2I_2 and main current is I

A

Phase difference between I1I_1 and I2I_2 is 9090^\circ

B

At some instant current in LRAL-R_A is 10 A. At the same instant current in CRBC-R_B branch will be 535\sqrt{3} A

C

At some instant I1I_1 is 10210\sqrt{2} A then at this instant I will be 10210\sqrt{2} A

D

Power dissipated in the circuit is 2121.3 W

Answer

Phase difference between I1I_1 and I2I_2 is 9090^\circ, At some instant current in LRAL-R_A is 10 A. At the same instant current in CRBC-R_B branch will be 535\sqrt{3} A, At some instant I1I_1 is 10210\sqrt{2} A then at this instant I will be 10210\sqrt{2} A

Explanation

Solution

The circuit consists of two parallel branches connected to an AC voltage source v(t)=2002sin(100t)Vv(t) = 200\sqrt{2} \sin(100t) V. The RMS voltage is Vrms=20022=200VV_{rms} = \frac{200\sqrt{2}}{\sqrt{2}} = 200 V and the angular frequency is ω=100\omega = 100 rad/s.

Branch 1: RA=10ΩR_A = 10 \Omega, L=310HL = \frac{\sqrt{3}}{10} H.

Inductive reactance XL=ωL=100×310=103ΩX_L = \omega L = 100 \times \frac{\sqrt{3}}{10} = 10\sqrt{3} \Omega.

Impedance Z1=RA2+XL2=102+(103)2=100+300=20ΩZ_1 = \sqrt{R_A^2 + X_L^2} = \sqrt{10^2 + (10\sqrt{3})^2} = \sqrt{100 + 300} = 20 \Omega.

RMS current I1,rms=VrmsZ1=20020=10AI_{1,rms} = \frac{V_{rms}}{Z_1} = \frac{200}{20} = 10 A.

Phase angle ϕ1=arctan(XLRA)=arctan(10310)=arctan(3)=60\phi_1 = \arctan(\frac{X_L}{R_A}) = \arctan(\frac{10\sqrt{3}}{10}) = \arctan(\sqrt{3}) = 60^\circ. Since it is an R-L circuit, the current lags the voltage.

Instantaneous current i1(t)=I1,0sin(ωtϕ1)=102sin(100t60)Ai_1(t) = I_{1,0} \sin(\omega t - \phi_1) = 10\sqrt{2} \sin(100t - 60^\circ) A.

Branch 2: RB=20ΩR_B = 20 \Omega, C=32mH=32×103FC = \frac{\sqrt{3}}{2} mH = \frac{\sqrt{3}}{2} \times 10^{-3} F.

Capacitive reactance XC=1ωC=1100×32×103=2×1031003=203=2033ΩX_C = \frac{1}{\omega C} = \frac{1}{100 \times \frac{\sqrt{3}}{2} \times 10^{-3}} = \frac{2 \times 10^3}{100\sqrt{3}} = \frac{20}{\sqrt{3}} = \frac{20\sqrt{3}}{3} \Omega.

Impedance Z2=RB2+XC2=202+(2033)2=400+400×39=400+4003=16003=403=4033ΩZ_2 = \sqrt{R_B^2 + X_C^2} = \sqrt{20^2 + (\frac{20\sqrt{3}}{3})^2} = \sqrt{400 + \frac{400 \times 3}{9}} = \sqrt{400 + \frac{400}{3}} = \sqrt{\frac{1600}{3}} = \frac{40}{\sqrt{3}} = \frac{40\sqrt{3}}{3} \Omega.

RMS current I2,rms=VrmsZ2=2004033=200×3403=5×33=53AI_{2,rms} = \frac{V_{rms}}{Z_2} = \frac{200}{\frac{40\sqrt{3}}{3}} = \frac{200 \times 3}{40\sqrt{3}} = \frac{5 \times 3}{\sqrt{3}} = 5\sqrt{3} A.

Phase angle ϕ2=arctan(XCRB)=arctan(203/320)=arctan(33)=arctan(13)=30\phi_2 = \arctan(\frac{X_C}{R_B}) = \arctan(\frac{20\sqrt{3}/3}{20}) = \arctan(\frac{\sqrt{3}}{3}) = \arctan(\frac{1}{\sqrt{3}}) = 30^\circ. Since it is an R-C circuit, the current leads the voltage.

Instantaneous current i2(t)=I2,0sin(ωt+ϕ2)=53×2sin(100t+30)=56sin(100t+30)Ai_2(t) = I_{2,0} \sin(\omega t + \phi_2) = 5\sqrt{3} \times \sqrt{2} \sin(100t + 30^\circ) = 5\sqrt{6} \sin(100t + 30^\circ) A.

Statement 1: Phase difference between I1I_1 and I2I_2 is 9090^\circ.

The phase of I1I_1 is 60-60^\circ and the phase of I2I_2 is +30+30^\circ relative to the voltage.

The phase difference is 30(60)=90|30^\circ - (-60^\circ)| = 90^\circ. Statement 1 is correct.

Statement 2: At some instant current in LRAL-R_A is 10 A. At the same instant current in CRBC-R_B branch will be 535\sqrt{3} A.

We need to check if there exists an instant tt such that i1(t)=10Ai_1(t) = 10 A and i2(t)=53Ai_2(t) = 5\sqrt{3} A.

10=102sin(100t60)    sin(100t60)=1210 = 10\sqrt{2} \sin(100t - 60^\circ) \implies \sin(100t - 60^\circ) = \frac{1}{\sqrt{2}}.

100t60=45100t - 60^\circ = 45^\circ or 135135^\circ (within one period).

If 100t60=45100t - 60^\circ = 45^\circ, then 100t=105100t = 105^\circ.

i2(t)=56sin(100t+30)=56sin(105+30)=56sin(135)=56×12=53Ai_2(t) = 5\sqrt{6} \sin(100t + 30^\circ) = 5\sqrt{6} \sin(105^\circ + 30^\circ) = 5\sqrt{6} \sin(135^\circ) = 5\sqrt{6} \times \frac{1}{\sqrt{2}} = 5\sqrt{3} A.

Since we found an instant where this is true, statement 2 is correct.

Statement 3: At some instant I1I_1 is 10210\sqrt{2} A then at this instant I will be 10210\sqrt{2} A.

I1I_1 refers to the instantaneous current i1(t)i_1(t). The maximum value of i1(t)i_1(t) is 102A10\sqrt{2} A. This occurs when sin(100t60)=1\sin(100t - 60^\circ) = 1.

So, 100t60=90+360n100t - 60^\circ = 90^\circ + 360^\circ n, which means 100t=150+360n100t = 150^\circ + 360^\circ n.

At this instant, 100t+30=150+30+360n=180+360n100t + 30^\circ = 150^\circ + 30^\circ + 360^\circ n = 180^\circ + 360^\circ n.

i2(t)=56sin(100t+30)=56sin(180+360n)=56×0=0i_2(t) = 5\sqrt{6} \sin(100t + 30^\circ) = 5\sqrt{6} \sin(180^\circ + 360^\circ n) = 5\sqrt{6} \times 0 = 0.

The instantaneous main current i(t)=i1(t)+i2(t)i(t) = i_1(t) + i_2(t).

At the instant when i1(t)=102Ai_1(t) = 10\sqrt{2} A, i2(t)=0i_2(t) = 0.

So, i(t)=102+0=102Ai(t) = 10\sqrt{2} + 0 = 10\sqrt{2} A. Statement 3 is correct.

Statement 4: Power dissipated in the circuit is 2121.3 W.

The average power dissipated in the circuit is the sum of the average power dissipated in each resistor.

Power dissipated in RAR_A: P1=I1,rms2RA=(10)2×10=100×10=1000WP_1 = I_{1,rms}^2 R_A = (10)^2 \times 10 = 100 \times 10 = 1000 W.

Power dissipated in RBR_B: P2=I2,rms2RB=(53)2×20=(25×3)×20=75×20=1500WP_2 = I_{2,rms}^2 R_B = (5\sqrt{3})^2 \times 20 = (25 \times 3) \times 20 = 75 \times 20 = 1500 W.

Total power dissipated P=P1+P2=1000+1500=2500WP = P_1 + P_2 = 1000 + 1500 = 2500 W.

Statement 4 is incorrect.

All statements 1, 2, and 3 are correct. Since this is a multiple choice question and the provided options are checkboxes, it is implied that there can be multiple correct options.