Solveeit Logo

Question

Question: Figure shows a square loop ABCD with edge length a. The resistance of the wire ABC is r and that of ...

Figure shows a square loop ABCD with edge length a. The resistance of the wire ABC is r and that of ADC is 2r. The value of magnetic field at the centre of the loop assuming uniform wire is

A

2μ0i3πa\frac { \sqrt { 2 } \mu _ { 0 } i } { 3 \pi a }

B

2μ0i3πa\frac { \sqrt { 2 } \mu _ { 0 } \mathrm { i } } { 3 \pi \mathrm { a } } \otimes

C

2μ0iπa\frac { \sqrt { 2 } \mu _ { 0 } \mathrm { i } } { \pi \mathrm { a } }

D

2μ0iπa\frac { \sqrt { 2 } \mu _ { 0 } \mathrm { i } } { \pi \mathrm { a } } \otimes

Answer

2μ0i3πa\frac { \sqrt { 2 } \mu _ { 0 } \mathrm { i } } { 3 \pi \mathrm { a } } \otimes

Explanation

Solution

According to question resistance of wire ADC is twice that of wire ABC. Hence current flows through ADC is half that of ABC i.e. i2i1=12\frac { i _ { 2 } } { i _ { 1 } } = \frac { 1 } { 2 }. Also i1+i2=ii _ { 1 } + i _ { 2 } = ii1=2i3i _ { 1 } = \frac { 2 i } { 3 } and i2=i3i _ { 2 } = \frac { i } { 3 }

Magnetic field at centre O due to wire AB and BC (part 1 and 2) B1=μ04π2i1sin45a/2B _ { 1 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 i _ { 1 } \sin 45 ^ { \circ } } { a / 2 } \otimes =μ04π22i1a= \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \sqrt { 2 } i _ { 1 } } { a } \otimes

and magnetic field at centre O due to wires AD and DC (i.e. part 3 and 4) B3=B4=μ04π22i2aB _ { 3 } = B _ { 4 } = \frac { \mu _ { 0 } } { 4 \pi } \frac { 2 \sqrt { 2 } i _ { 2 } } { a }

Also i1 = 2i2. So (B1 = B2) > (B3 = B4)

Hence net magnetic field at centre O

Bnet =(B1+B2)(B3+B4)B _ { \text {net } } = \left( B _ { 1 } + B _ { 2 } \right) - \left( B _ { 3 } + B _ { 4 } \right) =2×μ04π22×(23i)aμ04π22(i3)×2a= 2 \times \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \sqrt { 2 } \times \left( \frac { 2 } { 3 } i \right) } { a } - \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \sqrt { 2 } \left( \frac { i } { 3 } \right) \times 2 } { a }