Solveeit Logo

Question

Question: Figure shows a small wheel fixed coaxially on a bigger one of double the radius. The system rotates ...

Figure shows a small wheel fixed coaxially on a bigger one of double the radius. The system rotates about the common axis. The strings supporting A and B do not slip on the wheels. If x and y be the distances travelled by A and B in the same time interval, then

A

x=2yx = 2y

B

x=yx = y

C

y=2xy = 2x

D

None of these

Answer

y=2xy = 2x

Explanation

Solution

Linear displacement (S) = Radius (r) × Angular

displacement (θ)

Sr\therefore S \propto r (if θ=\theta = constant)

 Distance travelled by mass A(x) Distance travelled by mass B(y)=\frac { \text { Distance travelled by mass } A ( x ) } { \text { Distance travelled by mass } B ( y ) } = Radius of pulley concerned with mass A(r)Radius of pulley concerned with mass B(2r)\frac{\text{Radius of pulley concerned with mass }A(r)}{\text{Radius of pulley concerned with mass }B(2r)} =12= \frac{1}{2}

y=2xy = 2x.