Solveeit Logo

Question

Physics Question on Alternating current

Figure shows a series LCRLCR circuit with R=200Ω,C=15.0μFR = 200 \,\Omega,\, C = 15.0\, \mu F and L=230mHL = 230\, mH. If ε=36.0sin120πt\varepsilon = 36.0\, sin\, 120\pi t, the amplitude I0I_{0} of the current II in the circuit is close to

A

109 mA

B

126 mA

C

150 mA

D

164 mA

Answer

164 mA

Explanation

Solution

Given R=200ΩR=200\, \Omega,
C=15.0μF=15×106FC=15.0\, \mu F=15 \times 10^{-6} F
L=230mH=230×103HL=230\, mH =230 \times 10^{-3} H,
ε=36.0sin120πt\varepsilon=36.0 \sin 120 \pi t
Compare it with standard equation
ε=(ε0sinωt)\varepsilon=\left(\varepsilon_{0} \sin \omega t\right)
We get
ε0=36.0,ω=120π\varepsilon_{0}=36.0, \omega=120 \pi
The capacitive reactance is
XC=1ωCX_{C}=\frac{1}{\omega C}
=1120π×15×106=177Ω=\frac{1}{120 \pi \times 15 \times 10^{-6}}=177\, \Omega
The inductive reactance is
XL=ωLX_{L}=\omega L
=120π×230×103=87Ω=120 \pi \times 230 \times 10^{-3}=87\, \Omega
Impedance of the series LCRLCR circuit is
Z=R2+(XCXL)2Z=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}
=(200)2+(17787)2=219Ω=\sqrt{(200)^{2}+(177-87)^{2}}=219\, \Omega
I0=ε0Z\therefore I_{0}=\frac{\varepsilon_{0}}{Z}
=36V219Ω=164mA=\frac{36 V }{219 \,\Omega}=164\, mA