Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

Figure shows a rectangular copper plate with is centre of mass at the origin OO and side AB=2BC=2mAB = 2BC = 2 m . If a quarter part of the plate (shown as shaded) is removed, the centre of mass of the remaining plate would lie at

A

112m,16m\frac{1}{12} m, \frac{1}{6} m

B

16m,112m\frac{1}{6} m, \frac{1}{12} m

C

13m,16m\frac{1}{3} m, \frac{1}{6} m

D

13m,12m\frac{1}{3} m, \frac{1}{2} m

Answer

16m,112m\frac{1}{6} m, \frac{1}{12} m

Explanation

Solution

Given,
AB=2BC=2mAB = 2BC = 2m

BC=1m\therefore BC=1\,m
σ\sigma be the mass per unit area
m1=m2=m3=(1×0.5)σ=0.5σm_{1}=m_{2}=m_{3}=(1\times0.5) \sigma=0.5\sigma
If G(xˉ,yˉ)G\left(\bar{x}, \bar{y}\right) be the position of centre of mass, then
xˉ=m1x1+m2x2+m3x3m1+m2+m3\bar{x}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}
=0.5σ×0.5+0.5σ×(0.5)+0.5σ×0.50.5σ+0.5σ+0.5σ=\frac{0.5\sigma\times0.5+0.5\sigma\times\left(-0.5\right)+0.5\sigma\times0.5}{0.5\sigma+0.5\sigma+0.5\sigma}
=0.5σ×0.53×0.5σ=16m=\frac{0.5\sigma\times0.5}{3\times0.5\sigma}=\frac{1}{6}m
yˉ=m1y1+m2y2+m3y3m1+m2+m3\bar{y}=\frac{m_{1}y_{1}+m_{2}y_{2}+m_{3}y_{3}}{m_{1}+m_{2}+m_{3}}
=0.5σ×0.25+0.5σ×0.25+0.5σ×(0.25)0.5σ+0.5σ+0.5σ=\frac{0.5\sigma\times0.25+0.5\sigma\times0.25+0.5\sigma\times\left(-0.25\right)}{0.5\sigma+0.5\sigma+0.5\sigma}
=0.5σ×0.253×0.5σ=112m=\frac{0.5\sigma\times0.25}{3\times0.5\sigma}=\frac{1}{12}m