Solveeit Logo

Question

Physics Question on Current electricity

Figure shows a potentiometer. Length of the potentiometer wire ABAB is 100cm100 \,cm and its resistance is 100Ω100\, \Omega . EMFEMF of the battery EE is 2V2 V . A resistance RR of 50Ω50 \Omega draws current from the potentiometer. What is the voltage across RR when the sliding contact CC is at the mid-point of ABAB ?

A

2/3V2/3 \,V

B

1v1\, v

C

4/3V4/3 \,V

D

3/2V3/2 \,V

Answer

2/3V2/3 \,V

Explanation

Solution

Given, E=2VE = 2 V, RAB=100ΩR_{AB}=100\,\Omega
lAB=100cml_{AB}=100\,cm and R=50ΩR=50\,\Omega
Circuit according to the question,


AC=CB=lAB2=50cmAC=CB=\frac{l_{AB}}{2}=50\,cm
RAB=100ΩR_{AB}=100\,\Omega
RAC=RCB=RAB2=1002R_{AC}=R_{CB}=\frac{R_{AB}}{2}=\frac{100}{2}
RAC=RCB=50Ω\therefore R_{AC}=R_{CB}=50\,\Omega
\therefore Net resistance of the circuit, Rnet=RCB+RRACR+RACR_{net}=R_{CB}+\frac{R\cdot R_{AC}}{R+R_{AC}}
=50+50×5050+50=50+25=50+\frac{50\times50}{50+50}=50+25
Rnet=75ΩR_{net}=75\,\Omega
\therefore Current from the battery, I=ERnet=275AI=\frac{E}{R_{net}}=\frac{2}{75}A
Using KVLKVL in mesh 11,
EVACVCB=0E-V_{AC}-V_{CB}=0
VAC+VCB=2\Rightarrow V_{AC}+V_{CB}=2
VAC+IRCB=2\Rightarrow V_{AC}+IR_{CB}=2
VAC=2275×50\Rightarrow V_{AC}=2-\frac{2}{75}\times50
VAC=243=643=23V\Rightarrow V_{AC}=2-\frac{4}{3}=\frac{6-4}{3}=\frac{2}{3}V