Solveeit Logo

Question

Question: Figure shows a fixed square frame of wire having a total resistance \(r\) placed coplanar with a lon...

Figure shows a fixed square frame of wire having a total resistance rr placed coplanar with a long, straight wire. The wire carries a current ii given by i=i2cos(2πtT)i={{i}_{2}}\cos \left( \dfrac{2\pi t}{T} \right). Find-
(a). the flux of the magnetic field through the square frame
(b). the emf induced in the frame
(c). the heat developed in the frame in the time interval 0 to 10T10T

Explanation

Solution

As each element of the square loop is at a different distance from the current carrying wire, flux associated with each will be different. Therefore, we calculate for an element and then integrate it for the whole square. The emf generated is opposite to the direction of current but directly proportional to the rate of change of current.

Formulas Used:
B=μ0I2πRB=\dfrac{{{\mu }_{0}}I}{2\pi R}
ϕ=BAcosθ\phi =BA\cos \theta
e=dϕdte=-\dfrac{d\phi }{dt}

Complete step-by-step solution:

Let us consider a strip of wire on the square of thickness dxdx. Its distance from the wire is xx.
When current flows through the wire, a magnetic field is developed around it. The magnetic field intensity, BB due to a long wire is given by-
B=μ0I2πRB=\dfrac{{{\mu }_{0}}I}{2\pi R}
Here, μ0{{\mu }_{0}} is permeability of free space
II is the current flowing through the wire
RR is distance from wire
Therefore magnetic field on strip dxdx will be-
B=μ0i2πxB=\dfrac{{{\mu }_{0}}i}{2\pi x} - (1)
Flux associated with an area is the number of magnetic field lines associated with it.
Flux,ϕ\phi passing through an area is given by
ϕ=BAcosθ\phi =BA\cos \theta
Here, AA is the area of cross section
θ\theta is the angle between area vector and Flux passing through dxdx is given by-
0ϕϕ=bb+aB(adx) ϕ=bb+aμ0i2πx(adx) ϕ=μ0ia2πbb+a(dx)x ϕ=μ0ia2πbb+a[lnx] ϕ=μ0ia2π[lnb+alnb] \begin{aligned} & \int\limits_{0}^{\phi }{\phi }=\int\limits_{b}^{b+a}{B\,(adx)} \\\ & \Rightarrow \phi =\int\limits_{b}^{b+a}{\dfrac{{{\mu }_{0}}i}{2\pi x}(adx)} \\\ & \Rightarrow \phi =\dfrac{{{\mu }_{0}}ia}{2\pi }\int\limits_{b}^{b+a}{\dfrac{(dx)}{x}} \\\ & \Rightarrow \phi =\dfrac{{{\mu }_{0}}ia}{2\pi }{}_{b}^{b+a}\left[ \ln x \right] \\\ & \Rightarrow \phi =\dfrac{{{\mu }_{0}}ia}{2\pi }\left[ \ln b+a-\ln b \right] \\\ \end{aligned}
ϕ=μ0ia2πlnb+ab\therefore \phi =\dfrac{{{\mu }_{0}}ia}{2\pi }\ln \dfrac{b+a}{b} - (1)
Therefore, the total flux associated with the square loop is μ0ia2π[lnb+ab]\dfrac{{{\mu }_{0}}ia}{2\pi }\left[ \ln \dfrac{b+a}{b} \right].
(b). We know that emf induced in the frame is given by-
e=dϕdte=-\dfrac{d\phi }{dt}
Substituting values from eq(1), we get,
e=ddt(μ0ia2π[lnb+ab])e=-\dfrac{d}{dt}\left( \dfrac{{{\mu }_{0}}ia}{2\pi }\left[ \ln \dfrac{b+a}{b} \right] \right)
Given, i=i2cos(2πtT)i={{i}_{2}}\cos \left( \dfrac{2\pi t}{T} \right) therefore,
e=ddt(μ0ai2cos(2πtT)2π[lnb+ab]) e=μ0ai22π[lnb+ab]ddtcos(2πtT) e=μ0ai22π[lnb+ab](2πTsin(2πtT)) \begin{aligned} & e=-\dfrac{d}{dt}\left( \dfrac{{{\mu }_{0}}a{{i}_{2}}\cos \left( \dfrac{2\pi t}{T} \right)}{2\pi }\left[ \ln \dfrac{b+a}{b} \right] \right) \\\ & \Rightarrow e=-\dfrac{{{\mu }_{0}}a{{i}_{2}}}{2\pi }\left[ \ln \dfrac{b+a}{b} \right]\dfrac{d}{dt}\cos \left( \dfrac{2\pi t}{T} \right) \\\ & \Rightarrow e=-\dfrac{{{\mu }_{0}}a{{i}_{2}}}{2\pi }\left[ \ln \dfrac{b+a}{b} \right]\left( -\dfrac{2\pi }{T}\sin \left( \dfrac{2\pi t}{T} \right) \right) \\\ \end{aligned}
e=μ0ai2(sin(2πtT))T[lnb+ab]\therefore e=\dfrac{{{\mu }_{0}}a{{i}_{2}}\left( \sin \left( \dfrac{2\pi t}{T} \right) \right)}{T}\left[ \ln \dfrac{b+a}{b} \right] - (2)
Therefore, the emf induced in the square loop is μ0ai2(sin(2πtT))T[lnb+ab]\dfrac{{{\mu }_{0}}a{{i}_{2}}\left( \sin \left( \dfrac{2\pi t}{T} \right) \right)}{T}\left[ \ln \dfrac{b+a}{b} \right]V
(c). the formula for heat is
H=V2RdtH=\dfrac{{{V}^{2}}}{R}dt
Here, VV is the potential drop in the square loop
RR is the resistance
Substituting from eq (2), we get,
H=e2rdt H=1r(μ0ai2(sin(2πtT))T[lnb+ab])dt H=μ02a2i22rT2ln2[b+ab](sin(2πtT))2dt H=μ02a2i22rT2ln2[b+ab](sin2(2πtT))dt H=μ02a2i224πrT3ln2[b+ab](sin(2πtT)cos(2πtT)) \begin{aligned} & H=\dfrac{{{e}^{2}}}{r}dt \\\ & \Rightarrow H=\dfrac{1}{r}\left( \dfrac{{{\mu }_{0}}a{{i}_{2}}\left( \sin \left( \dfrac{2\pi t}{T} \right) \right)}{T}\left[ \ln \dfrac{b+a}{b} \right] \right)dt \\\ & \Rightarrow H=\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}}{r{{T}^{2}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]{{\left( \sin \left( \dfrac{2\pi t}{T} \right) \right)}^{2}}dt \\\ & \Rightarrow H=\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}}{r{{T}^{2}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]\left( {{\sin }^{2}}\left( \dfrac{2\pi t}{T} \right) \right)dt \\\ & \Rightarrow H=\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}4\pi }{r{{T}^{3}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]\left( \sin \left( \dfrac{2\pi t}{T} \right)\cos \left( \dfrac{2\pi t}{T} \right) \right) \\\ \end{aligned}
H=μ02a2i224πrT3ln2[b+ab](sin(2πtT)cos(2πtT))\therefore H=\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}4\pi }{r{{T}^{3}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]\left( \sin \left( \dfrac{2\pi t}{T} \right)\cos \left( \dfrac{2\pi t}{T} \right) \right) - (3)

Therefore, the heat developed in the square loop is μ02a2i224πrT3ln2[b+ab](sin(2πtT)cos(2πtT))\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}4\pi }{r{{T}^{3}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]\left( \sin \left( \dfrac{2\pi t}{T} \right)\cos \left( \dfrac{2\pi t}{T} \right) \right)

Therefore by eq(1), eq (2) and eq (3) the flux associated with the square loop is:-
ϕ=μ0ia2πlnb+ab\phi =\dfrac{{{\mu }_{0}}ia}{2\pi }\ln \dfrac{b+a}{b}.

Emf developed across its ends is:-
e=μ0ai2(sin(2πtT))T[lnb+ab]e=\dfrac{{{\mu }_{0}}a{{i}_{2}}\left( \sin \left( \dfrac{2\pi t}{T} \right) \right)}{T}\left[ \ln \dfrac{b+a}{b} \right].

And heat generated is:-
μ02a2i224πrT3ln2[b+ab](sin(2πtT)cos(2πtT))\dfrac{\mu _{0}^{2}{{a}^{2}}i_{2}^{2}4\pi }{r{{T}^{3}}}{{\ln }^{2}}\left[ \dfrac{b+a}{b} \right]\left( \sin \left( \dfrac{2\pi t}{T} \right)\cos \left( \dfrac{2\pi t}{T} \right) \right).

Note:
The direction of magnetic field due to current carrying wire is given by right hand thumb rule. If an area vector of a surface is perpendicular to the direction of magnetic field, there is no flux passing through it. Most of the energy of the square loop developed due to a potential difference at its ends is dissipated as heat.