Solveeit Logo

Question

Question: If the X = 20 V, Y = 18 $\Omega$, the current $I_T$ is ______ A....

If the X = 20 V, Y = 18 Ω\Omega, the current ITI_T is ______ A.

Answer

0.9692

Explanation

Solution

To find the total current ITI_T in the circuit, we need to calculate the equivalent resistance (ReqR_{eq}) of the entire circuit and then apply Ohm's Law (IT=X/ReqI_T = X / R_{eq}).

Given values: Voltage X=20X = 20 V Resistance Y=18ΩY = 18 \, \Omega

Let's break down the circuit to find the equivalent resistance:

  1. Identify the series combination of the 3 Ω\Omega and 6 Ω\Omega resistors:
    The 3 Ω\Omega and 6 Ω\Omega resistors are connected in series.
    Rs1=3Ω+6Ω=9ΩR_{s1} = 3 \, \Omega + 6 \, \Omega = 9 \, \Omega.

  2. Identify the parallel combination of the 2 Ω\Omega resistor and Rs1R_{s1}:
    The 2 Ω\Omega resistor is connected in parallel with the series combination Rs1R_{s1} (9 Ω\Omega).
    Rp1=2Ω×Rs12Ω+Rs1=2×92+9=1811ΩR_{p1} = \frac{2 \, \Omega \times R_{s1}}{2 \, \Omega + R_{s1}} = \frac{2 \times 9}{2 + 9} = \frac{18}{11} \, \Omega.

  3. Calculate the total equivalent resistance (ReqR_{eq}):
    The 1 Ω\Omega resistor, the parallel combination Rp1R_{p1} (18/11 Ω\Omega), and the Y Ω\Omega resistor are all connected in series with the voltage source.
    Req=1Ω+Rp1+YΩR_{eq} = 1 \, \Omega + R_{p1} + Y \, \Omega.
    Substitute the given value Y=18ΩY = 18 \, \Omega:
    Req=1+1811+18=19+1811ΩR_{eq} = 1 + \frac{18}{11} + 18 = 19 + \frac{18}{11} \, \Omega.
    To add these, find a common denominator:
    Req=19×1111+1811=209+1811=22711ΩR_{eq} = \frac{19 \times 11}{11} + \frac{18}{11} = \frac{209 + 18}{11} = \frac{227}{11} \, \Omega.

  4. Calculate the total current (ITI_T) using Ohm's Law:
    IT=XReqI_T = \frac{X}{R_{eq}}.
    Substitute the given voltage X=20X = 20 V and the calculated ReqR_{eq}:
    IT=20 V22711Ω=20×11227=220227I_T = \frac{20 \text{ V}}{\frac{227}{11} \, \Omega} = \frac{20 \times 11}{227} = \frac{220}{227} A.

  5. Calculate the decimal value:
    IT0.969163I_T \approx 0.969163 A.
    Rounding to four decimal places, IT0.9692I_T \approx 0.9692 A.