Question
Question: Let L denotes the value of $\cos^2(\alpha - \beta)$, if $\sin 2\alpha + \sin 2\beta = \frac{1}{2}$ a...
Let L denotes the value of cos2(α−β), if sin2α+sin2β=21 and cos2α+cos2β=23. If M denotes the value of expression logxyxyz1+logyzxyz1+logzxxyz1, (Here x,y,z∈R+−{1}) then the value of (16L2+M2), is

5
4
3
2
5
Solution
-
Calculate L: Given sin2α+sin2β=21 and cos2α+cos2β=23. Squaring and adding these equations: (sin2α+sin2β)2+(cos2α+cos2β)2=(21)2+(23)2 2+2(cos2αcos2β+sin2αsin2β)=41+43=1 2+2cos(2α−2β)=1⟹cos(2(α−β))=−21. Using cos(2θ)=2cos2θ−1: −21=2cos2(α−β)−1⟹2cos2(α−β)=21⟹L=cos2(α−β)=41.
-
Calculate M: M=logxyxyz1+logyzxyz1+logzxxyz1 Using logab1=logba: M=logxyzxy+logxyzyz+logxyzzx Using logbA+logbB+logbC=logb(ABC): M=logxyz(xy⋅yz⋅zx)=logxyz(x2y2z2)=logxyz(xyz)2 Using logbAk=klogbA: M=2logxyz(xyz)=2⋅1=2.
-
Calculate 16L2+M2: 16L2+M2=16(41)2+(2)2=16(161)+4=1+4=5.
