Solveeit Logo

Question

Question: Let L denotes the value of $\cos^2(\alpha - \beta)$, if $\sin 2\alpha + \sin 2\beta = \frac{1}{2}$ a...

Let L denotes the value of cos2(αβ)\cos^2(\alpha - \beta), if sin2α+sin2β=12\sin 2\alpha + \sin 2\beta = \frac{1}{2} and cos2α+cos2β=32\cos 2\alpha + \cos 2\beta = \frac{\sqrt{3}}{2}. If M denotes the value of expression 1logxyxyz+1logyzxyz+1logzxxyz\frac{1}{\log_{xy}xyz} + \frac{1}{\log_{yz}xyz} + \frac{1}{\log_{zx}xyz}, (Here x,y,zR+{1}x, y, z \in R^+ - \{1\}) then the value of (16L2+M2)(16L^2 + M^2), is

A

5

B

4

C

3

D

2

Answer

5

Explanation

Solution

  1. Calculate L: Given sin2α+sin2β=12\sin 2\alpha + \sin 2\beta = \frac{1}{2} and cos2α+cos2β=32\cos 2\alpha + \cos 2\beta = \frac{\sqrt{3}}{2}. Squaring and adding these equations: (sin2α+sin2β)2+(cos2α+cos2β)2=(12)2+(32)2(\sin 2\alpha + \sin 2\beta)^2 + (\cos 2\alpha + \cos 2\beta)^2 = (\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2 2+2(cos2αcos2β+sin2αsin2β)=14+34=12 + 2(\cos 2\alpha \cos 2\beta + \sin 2\alpha \sin 2\beta) = \frac{1}{4} + \frac{3}{4} = 1 2+2cos(2α2β)=1    cos(2(αβ))=122 + 2\cos(2\alpha - 2\beta) = 1 \implies \cos(2(\alpha - \beta)) = -\frac{1}{2}. Using cos(2θ)=2cos2θ1\cos(2\theta) = 2\cos^2\theta - 1: 12=2cos2(αβ)1    2cos2(αβ)=12    L=cos2(αβ)=14-\frac{1}{2} = 2\cos^2(\alpha - \beta) - 1 \implies 2\cos^2(\alpha - \beta) = \frac{1}{2} \implies L = \cos^2(\alpha - \beta) = \frac{1}{4}.

  2. Calculate M: M=1logxyxyz+1logyzxyz+1logzxxyzM = \frac{1}{\log_{xy}xyz} + \frac{1}{\log_{yz}xyz} + \frac{1}{\log_{zx}xyz} Using 1logab=logba\frac{1}{\log_a b} = \log_b a: M=logxyzxy+logxyzyz+logxyzzxM = \log_{xyz} xy + \log_{xyz} yz + \log_{xyz} zx Using logbA+logbB+logbC=logb(ABC)\log_b A + \log_b B + \log_b C = \log_b (ABC): M=logxyz(xyyzzx)=logxyz(x2y2z2)=logxyz(xyz)2M = \log_{xyz} (xy \cdot yz \cdot zx) = \log_{xyz} (x^2 y^2 z^2) = \log_{xyz} (xyz)^2 Using logbAk=klogbA\log_b A^k = k \log_b A: M=2logxyz(xyz)=21=2M = 2 \log_{xyz} (xyz) = 2 \cdot 1 = 2.

  3. Calculate 16L2+M216L^2 + M^2: 16L2+M2=16(14)2+(2)2=16(116)+4=1+4=516L^2 + M^2 = 16\left(\frac{1}{4}\right)^2 + (2)^2 = 16\left(\frac{1}{16}\right) + 4 = 1 + 4 = 5.