Solveeit Logo

Question

Question: The number of solutions of the equation \((\log_2 \cos \theta)^2 + \log_{\cos \theta}^4 (16 \cos \th...

The number of solutions of the equation (log2cosθ)2+logcosθ4(16cosθ)=2(\log_2 \cos \theta)^2 + \log_{\cos \theta}^4 (16 \cos \theta) = 2, in interval [0,2π)[0, 2\pi) is

A

0

B

1

C

2

D

4

Answer

2

Explanation

Solution

Let the given equation be (log2cosθ)2+logcosθ4(16cosθ)=2(\log_2 \cos \theta)^2 + \log_{\cos \theta}^4 (16 \cos \theta) = 2. The domain requires cosθ>0\cos \theta > 0 and cosθ1\cos \theta \neq 1. In [0,2π)[0, 2\pi), this means θ(0,π/2)(3π/2,2π)\theta \in (0, \pi/2) \cup (3\pi/2, 2\pi), which implies 0<cosθ<10 < \cos \theta < 1.

Assuming the notation logcosθ4(16cosθ)\log_{\cos \theta}^4 (16 \cos \theta) means log(cosθ)4(16cosθ)\log_{(\cos \theta)^4} (16 \cos \theta): Let y=log2cosθy = \log_2 \cos \theta. Since 0<cosθ<10 < \cos \theta < 1, we have y<0y < 0. The equation becomes y2+log(cosθ)4(16cosθ)=2y^2 + \log_{(\cos \theta)^4} (16 \cos \theta) = 2. Using the change of base formula: log(cosθ)4(16cosθ)=log2(16cosθ)log2((cosθ)4)=log216+log2cosθ4log2cosθ=4+y4y\log_{(\cos \theta)^4} (16 \cos \theta) = \frac{\log_2 (16 \cos \theta)}{\log_2 ((\cos \theta)^4)} = \frac{\log_2 16 + \log_2 \cos \theta}{4 \log_2 \cos \theta} = \frac{4+y}{4y}. The equation is y2+4+y4y=2y^2 + \frac{4+y}{4y} = 2. y2+1y+14=2y^2 + \frac{1}{y} + \frac{1}{4} = 2 y2+1y74=0y^2 + \frac{1}{y} - \frac{7}{4} = 0 Multiplying by 4y4y: 4y3+47y=0    4y37y+4=04y^3 + 4 - 7y = 0 \implies 4y^3 - 7y + 4 = 0. Let f(y)=4y37y+4f(y) = 4y^3 - 7y + 4. We need roots where y<0y < 0. f(y)=12y27f'(y) = 12y^2 - 7. For y<0y < 0, f(y)=0f'(y) = 0 at y=7/12y = -\sqrt{7/12}. f(0)=4f(0) = 4. f(2)=4(8)7(2)+4=32+14+4=14f(-2) = 4(-8) - 7(-2) + 4 = -32 + 14 + 4 = -14. Since f(2)<0f(-2) < 0 and f(0)>0f(0) > 0, there is a root y0(2,0)y_0 \in (-2, 0). The local maximum at y=7/12y = -\sqrt{7/12} is f(7/12)=(14/3)7/12+4>0f(-\sqrt{7/12}) = (14/3)\sqrt{7/12} + 4 > 0. As yy \to -\infty, f(y)f(y) \to -\infty. Thus, there is exactly one negative root y0y_0. So, log2cosθ=y0\log_2 \cos \theta = y_0, which means cosθ=2y0\cos \theta = 2^{y_0}. Since y0(2,0)y_0 \in (-2, 0), 2y0(22,20)=(1/4,1)2^{y_0} \in (2^{-2}, 2^0) = (1/4, 1). For any c(0,1)c \in (0, 1), cosθ=c\cos \theta = c has two solutions in [0,2π)[0, 2\pi). Thus, there are 2 solutions.

Assuming the notation logcosθ4(16cosθ)\log_{\cos \theta}^4 (16 \cos \theta) means logcosθ((16cosθ)4)\log_{\cos \theta} ((16 \cos \theta)^4): The equation becomes y2+logcosθ((16cosθ)4)=2y^2 + \log_{\cos \theta} ((16 \cos \theta)^4) = 2. y2+4log2(16cosθ)log2cosθ=2y^2 + \frac{4 \log_2 (16 \cos \theta)}{\log_2 \cos \theta} = 2 y2+4(4+y)y=2y^2 + \frac{4(4+y)}{y} = 2 y2+16y+4=2y^2 + \frac{16}{y} + 4 = 2 y2+16y+2=0y^2 + \frac{16}{y} + 2 = 0 Multiplying by yy: y3+16+2y=0    y3+2y+16=0y^3 + 16 + 2y = 0 \implies y^3 + 2y + 16 = 0. Let g(y)=y3+2y+16g(y) = y^3 + 2y + 16. g(y)=3y2+2>0g'(y) = 3y^2 + 2 > 0, so g(y)g(y) is strictly increasing. g(2)=84+16=4g(-2) = -8 - 4 + 16 = 4. g(3)=276+16=17g(-3) = -27 - 6 + 16 = -17. There is one real root y0(3,2)y_0 \in (-3, -2). So, log2cosθ=y0\log_2 \cos \theta = y_0, which means cosθ=2y0\cos \theta = 2^{y_0}. Since y0(3,2)y_0 \in (-3, -2), 2y0(23,22)=(1/8,1/4)2^{y_0} \in (2^{-3}, 2^{-2}) = (1/8, 1/4). For any c(0,1)c \in (0, 1), cosθ=c\cos \theta = c has two solutions in [0,2π)[0, 2\pi). Thus, there are 2 solutions.

Both plausible interpretations lead to 2 solutions.