Solveeit Logo

Question

Question: f(x) = \begin{cases} \sin^{-1}(\frac{2x}{1+x^2}), & x \leq 0 \\ [3x] & 0 < x < k \text{ Where } [p] ...

f(x) = \begin{cases} \sin^{-1}(\frac{2x}{1+x^2}), & x \leq 0 \ [3x] & 0 < x < k \text{ Where } [p] \text{ denotes greatest integer} \ (x-\alpha)^2 + \beta, & x \geq k \end{cases}

less than or equal to p and kNk \in N. If f(x)f(x) is non-derivable at exactly 7 points, then the value of (α+β+k)=(\alpha + \beta + k) =

A

9

B

10

C

11

D

12

Answer

9

Explanation

Solution

The function f(x)f(x) is defined piecewise. We analyze the differentiability in each interval and at the transition points.

  1. For x<0x < 0, f(x)=sin1(2x1+x2)f(x) = \sin^{-1}(\frac{2x}{1+x^2}). This function is non-derivable at x=1x=-1.
  2. For 0<x<k0 < x < k, f(x)=[3x]f(x) = [3x]. The greatest integer function [y][y] is non-derivable when yy is an integer. Thus, [3x][3x] is non-derivable when 3x=n3x = n, where nn is an integer. For x(0,k)x \in (0, k), we have 0<n<3k0 < n < 3k. The points of non-derivability are x=1/3,2/3,,(3k1)/3x = 1/3, 2/3, \dots, (3k-1)/3. There are 3k13k-1 such points.
  3. For x>kx > k, f(x)=(xα)2+βf(x) = (x-\alpha)^2 + \beta, which is a polynomial and is differentiable everywhere.

Now, we check the transition points x=0x=0 and x=kx=k.

  • At x=0x=0: The left limit is limx0sin1(2x1+x2)=sin1(0)=0\lim_{x \to 0^-} \sin^{-1}(\frac{2x}{1+x^2}) = \sin^{-1}(0) = 0. The right limit is limx0+[3x]=0\lim_{x \to 0^+} [3x] = 0. The function is continuous at x=0x=0. The left derivative at x=0x=0 is limx0ddx(sin1(2x1+x2))=limx021+x2=2\lim_{x \to 0^-} \frac{d}{dx}(\sin^{-1}(\frac{2x}{1+x^2})) = \lim_{x \to 0^-} \frac{2}{1+x^2} = 2. The right derivative at x=0x=0 is limx0+ddx([3x])\lim_{x \to 0^+} \frac{d}{dx}([3x]). For x(0,1/3)x \in (0, 1/3), [3x]=0[3x]=0, so the derivative is 0. Since 202 \neq 0, the function is non-derivable at x=0x=0.

  • At x=kx=k: For continuity, limxk[3x]=f(k)\lim_{x \to k^-} [3x] = f(k). Since kNk \in \mathbb{N}, limxk[3x]=3k1\lim_{x \to k^-} [3x] = 3k-1. So, 3k1=(kα)2+β3k-1 = (k-\alpha)^2 + \beta. The left derivative at x=kx=k is limxkddx([3x])\lim_{x \to k^-} \frac{d}{dx}([3x]). For x(k1/3,k)x \in (k-1/3, k), [3x]=3k1[3x] = 3k-1, so the derivative is 0. The right derivative at x=kx=k is limxk+ddx((xα)2+β)=limxk+2(xα)=2(kα)\lim_{x \to k^+} \frac{d}{dx}((x-\alpha)^2 + \beta) = \lim_{x \to k^+} 2(x-\alpha) = 2(k-\alpha). For the function to be non-derivable at x=kx=k, we need 02(kα)0 \neq 2(k-\alpha), which means αk\alpha \neq k.

The total number of non-derivable points is 11 (at x=1x=-1) +1+ 1 (at x=0x=0) +(3k1)+ (3k-1) (from [3x][3x]) +1+ 1 (at x=kx=k, if αk\alpha \neq k).

Case 1: αk\alpha \neq k. Total non-derivable points = 1+1+(3k1)+1=3k+21 + 1 + (3k-1) + 1 = 3k+2. Given 3k+2=73k+2 = 7, we get 3k=53k=5, so k=5/3k=5/3. This contradicts kNk \in \mathbb{N}.

Case 2: α=k\alpha = k. Total non-derivable points = 1+1+(3k1)=3k+11 + 1 + (3k-1) = 3k+1. Given 3k+1=73k+1 = 7, we get 3k=63k=6, so k=2k=2. This is a valid integer. If k=2k=2, then α=k=2\alpha=k=2. Using the continuity condition at x=k=2x=k=2: 3k1=(kα)2+β3k-1 = (k-\alpha)^2 + \beta. 3(2)1=(22)2+β    5=0+β    β=53(2)-1 = (2-2)^2 + \beta \implies 5 = 0 + \beta \implies \beta = 5. So, α=2,β=5,k=2\alpha=2, \beta=5, k=2. The value of (α+β+k)=2+5+2=9(\alpha + \beta + k) = 2 + 5 + 2 = 9.

The 7 non-derivable points are: 1,0,1/3,2/3,1,4/3,5/3-1, 0, 1/3, 2/3, 1, 4/3, 5/3.