Solveeit Logo

Question

Question: Obtain differential co-efficient of $Tan^{-1}(\frac{\sqrt{1+x^2}-1}{x})$ w.r.t $Cos^{-1}\frac{\sqrt{...

Obtain differential co-efficient of Tan1(1+x21x)Tan^{-1}(\frac{\sqrt{1+x^2}-1}{x}) w.r.t Cos11+1+x221+x2Cos^{-1}\frac{\sqrt{1+\sqrt{1+x^2}}}{2\sqrt{1+x^2}} (x>0,xRx>0, x \in R)

Answer

1

Explanation

Solution

Let y=Tan1(1+x21x)y = Tan^{-1}(\frac{\sqrt{1+x^2}-1}{x}) and z=Cos11+1+x221+x2z = Cos^{-1}\frac{\sqrt{1+\sqrt{1+x^2}}}{2\sqrt{1+x^2}}. We need to find dydz=dy/dxdz/dx\frac{dy}{dz} = \frac{dy/dx}{dz/dx}.

For yy: Let x=tanθx = \tan \theta. Then 1+x21x=secθ1tanθ=tan(θ/2)\frac{\sqrt{1+x^2}-1}{x} = \frac{\sec \theta - 1}{\tan \theta} = \tan(\theta/2). So, y=Tan1(tan(θ/2))=θ/2y = Tan^{-1}(\tan(\theta/2)) = \theta/2. Since x=tanθx = \tan \theta, θ=Tan1x\theta = Tan^{-1}x. Thus, y=12Tan1xy = \frac{1}{2} Tan^{-1}x.

For zz: Let 1+x2=secα\sqrt{1+x^2} = \sec \alpha. Then 1+secα2secα=1+cosα2=cos(α/2)\frac{\sqrt{1+\sec \alpha}}{2\sec \alpha} = \sqrt{\frac{1+\cos \alpha}{2}} = \cos(\alpha/2). So, z=Cos1(cos(α/2))=α/2z = Cos^{-1}(\cos(\alpha/2)) = \alpha/2. Since 1+x2=secα\sqrt{1+x^2} = \sec \alpha, we have x=tanαx = \tan \alpha. Thus α=Tan1x\alpha = Tan^{-1}x. Thus, z=12Tan1xz = \frac{1}{2} Tan^{-1}x.

Since y=zy=z, dydx=dzdx\frac{dy}{dx} = \frac{dz}{dx}. Therefore, dydz=dy/dxdz/dx=1\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = 1.