Solveeit Logo

Question

Question: Let $f(x) = x + \frac{1}{2x+\frac{1}{2x+....\infty}}$, then $\sqrt{\frac{f(50) f'(50)}{2}} = $...

Let f(x)=x+12x+12x+....f(x) = x + \frac{1}{2x+\frac{1}{2x+....\infty}}, then f(50)f(50)2=\sqrt{\frac{f(50) f'(50)}{2}} =

A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

I

9

Answer

5

Explanation

Solution

Let C=12x+12x+12x+....C = \frac{1}{2x+\frac{1}{2x+\frac{1}{2x+....\infty}}}. Then f(x)=x+Cf(x) = x+C. The denominator of CC is D=2x+12x+12x+....D = 2x+\frac{1}{2x+\frac{1}{2x+....\infty}}. We can see that D=2x+CD = 2x+C. Substituting this into C=1DC = \frac{1}{D}, we get C=12x+CC = \frac{1}{2x+C}. This leads to the quadratic equation C2+2xC1=0C^2 + 2xC - 1 = 0. Solving for CC, we get C=x±x2+1C = -x \pm \sqrt{x^2+1}. Since x=50>0x=50 > 0, CC must be positive, so C=x+x2+1C = -x + \sqrt{x^2+1}. Then f(x)=x+C=x+(x+x2+1)=x2+1f(x) = x+C = x + (-x + \sqrt{x^2+1}) = \sqrt{x^2+1}. The derivative of f(x)f(x) is f(x)=ddx(x2+1)=xx2+1f'(x) = \frac{d}{dx}(\sqrt{x^2+1}) = \frac{x}{\sqrt{x^2+1}}. Now, we evaluate f(50)f(50) and f(50)f'(50): f(50)=502+1=2501f(50) = \sqrt{50^2+1} = \sqrt{2501}. f(50)=50502+1=502501f'(50) = \frac{50}{\sqrt{50^2+1}} = \frac{50}{\sqrt{2501}}. The expression to find is f(50)f(50)2\sqrt{\frac{f(50) f'(50)}{2}}. Substituting the values: 25015025012=502=25=5\sqrt{\frac{\sqrt{2501} \cdot \frac{50}{\sqrt{2501}}}{2}} = \sqrt{\frac{50}{2}} = \sqrt{25} = 5.