Solveeit Logo

Question

Question: The coordinates of the feet of the perpendicular from the vertices of a triangle ABC on the opposite...

The coordinates of the feet of the perpendicular from the vertices of a triangle ABC on the opposite sides are D (20, 25), E (8, 16), F (8,9) Then the sum of x-coordinates of all vertices of the triangle is

Answer

70

Explanation

Solution

Let the vertices of the triangle be A, B, C. Let the feet of the perpendiculars (altitudes) from A, B, C to the opposite sides BC, CA, AB be D, E, F respectively. We are given the coordinates of the feet of the altitudes:

D = (20, 25) E = (8, 16) F = (8, 9)

A key property in geometry states that the vertices of the original triangle ABC are the excenters of the pedal triangle DEF. Specifically:

  • Vertex A is the excenter of DEF\triangle DEF opposite to vertex D.
  • Vertex B is the excenter of DEF\triangle DEF opposite to vertex E.
  • Vertex C is the excenter of DEF\triangle DEF opposite to vertex F.

Let the coordinates of the vertices of the pedal triangle be D(xD,yD)D(x_D, y_D), E(xE,yE)E(x_E, y_E), F(xF,yF)F(x_F, y_F). Let the side lengths of the pedal triangle be d=EFd = EF, e=DFe = DF, f=DEf = DE.

First, calculate the side lengths of the pedal triangle DEF using the distance formula: d=EF=(xExF)2+(yEyF)2=(88)2+(169)2=02+72=7d = EF = \sqrt{(x_E - x_F)^2 + (y_E - y_F)^2} = \sqrt{(8 - 8)^2 + (16 - 9)^2} = \sqrt{0^2 + 7^2} = 7 e=DF=(xDxF)2+(yDyF)2=(208)2+(259)2=122+162=144+256=400=20e = DF = \sqrt{(x_D - x_F)^2 + (y_D - y_F)^2} = \sqrt{(20 - 8)^2 + (25 - 9)^2} = \sqrt{12^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20 f=DE=(xDxE)2+(yDyE)2=(208)2+(2516)2=122+92=144+81=225=15f = DE = \sqrt{(x_D - x_E)^2 + (y_D - y_E)^2} = \sqrt{(20 - 8)^2 + (25 - 16)^2} = \sqrt{12^2 + 9^2} = \sqrt{144 + 81} = \sqrt{225} = 15

The coordinates of the excenter opposite to a vertex (say D) are given by the formula: A=(xA,yA)=(dxD+exE+fxFd+e+f,dyD+eyE+fyFd+e+f)A = (x_A, y_A) = \left( \frac{-d x_D + e x_E + f x_F}{-d + e + f}, \frac{-d y_D + e y_E + f y_F}{-d + e + f} \right) B=(xB,yB)=(dxDexE+fxFde+f,dyDeyE+fyFde+f)B = (x_B, y_B) = \left( \frac{d x_D - e x_E + f x_F}{d - e + f}, \frac{d y_D - e y_E + f y_F}{d - e + f} \right) C=(xC,yC)=(dxD+exEfxFd+ef,dyD+eyEfyFd+ef)C = (x_C, y_C) = \left( \frac{d x_D + e x_E - f x_F}{d + e - f}, \frac{d y_D + e y_E - f y_F}{d + e - f} \right)

We need to find the sum of the x-coordinates of all vertices of the triangle ABC, i.e., xA+xB+xCx_A + x_B + x_C.

Calculate the denominators for the x-coordinates: For xAx_A: d+e+f=7+20+15=28-d + e + f = -7 + 20 + 15 = 28 For xBx_B: de+f=720+15=2d - e + f = 7 - 20 + 15 = 2 For xCx_C: d+ef=7+2015=12d + e - f = 7 + 20 - 15 = 12

Now, calculate the x-coordinates of A, B, and C: xA=7(20)+20(8)+15(8)28=140+160+12028=14028=5x_A = \frac{-7(20) + 20(8) + 15(8)}{28} = \frac{-140 + 160 + 120}{28} = \frac{140}{28} = 5 xB=7(20)20(8)+15(8)2=140160+1202=1002=50x_B = \frac{7(20) - 20(8) + 15(8)}{2} = \frac{140 - 160 + 120}{2} = \frac{100}{2} = 50 xC=7(20)+20(8)15(8)12=140+16012012=18012=15x_C = \frac{7(20) + 20(8) - 15(8)}{12} = \frac{140 + 160 - 120}{12} = \frac{180}{12} = 15

Finally, sum the x-coordinates: Sum of x-coordinates = xA+xB+xC=5+50+15=70x_A + x_B + x_C = 5 + 50 + 15 = 70.