Question
Question: The remainder when $$ \begin{vmatrix} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^...
The remainder when
201420142017201720202020201520152018201820212021201620162019201920222022is divided by 5 is k, then k is equal to ____.

4
Solution
We need to find the determinant modulo 5. First, we reduce each element modulo 5. 2014≡4(mod5), 2015≡0(mod5), 2016≡1(mod5) 2017≡2(mod5), 2018≡3(mod5), 2019≡4(mod5) 2020≡0(mod5), 2021≡1(mod5), 2022≡2(mod5)
For the exponents, we use Fermat's Little Theorem, which states that for a prime p, ap−1≡1(modp) for any integer a not divisible by p. Here p=5, so a4≡1(mod5). We reduce the exponents modulo 4. 2014≡2(mod4), 2015≡3(mod4), 2016≡0(mod4) 2017≡1(mod4), 2018≡2(mod4), 2019≡3(mod4) 2020≡0(mod4), 2021≡1(mod4), 2022≡2(mod4)
Now we calculate each term modulo 5: 20142014≡42014≡(−1)2014≡1(mod5) 20152015≡02015≡0(mod5) 20162016≡12016≡1(mod5) 20172017≡22017≡22016⋅21≡(24)504⋅2≡1504⋅2≡2(mod5) 20182018≡32018≡32016⋅32≡(34)504⋅9≡1504⋅9≡4(mod5) 20192019≡42019≡(−1)2019≡−1≡4(mod5) 20202020≡02020≡0(mod5) 20212021≡12021≡1(mod5) 20222022≡22022≡22020⋅22≡(24)505⋅4≡1505⋅4≡4(mod5)
The determinant modulo 5 is:
120041144≡1(4⋅4−4⋅1)−0(…)+1(2⋅1−4⋅0)(mod5) ≡1(16−4)+1(2)(mod5) ≡12+2(mod5) ≡14(mod5) ≡4(mod5)Thus, k=4.
