Solveeit Logo

Question

Question: The remainder when $$ \begin{vmatrix} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^...

The remainder when

201420142015201520162016201720172018201820192019202020202021202120222022\begin{vmatrix} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{vmatrix}

is divided by 5 is k, then kk is equal to ____.

Answer

4

Explanation

Solution

We need to find the determinant modulo 5. First, we reduce each element modulo 5. 20144(mod5)2014 \equiv 4 \pmod{5}, 20150(mod5)2015 \equiv 0 \pmod{5}, 20161(mod5)2016 \equiv 1 \pmod{5} 20172(mod5)2017 \equiv 2 \pmod{5}, 20183(mod5)2018 \equiv 3 \pmod{5}, 20194(mod5)2019 \equiv 4 \pmod{5} 20200(mod5)2020 \equiv 0 \pmod{5}, 20211(mod5)2021 \equiv 1 \pmod{5}, 20222(mod5)2022 \equiv 2 \pmod{5}

For the exponents, we use Fermat's Little Theorem, which states that for a prime pp, ap11(modp)a^{p-1} \equiv 1 \pmod{p} for any integer aa not divisible by pp. Here p=5p=5, so a41(mod5)a^4 \equiv 1 \pmod{5}. We reduce the exponents modulo 4. 20142(mod4)2014 \equiv 2 \pmod{4}, 20153(mod4)2015 \equiv 3 \pmod{4}, 20160(mod4)2016 \equiv 0 \pmod{4} 20171(mod4)2017 \equiv 1 \pmod{4}, 20182(mod4)2018 \equiv 2 \pmod{4}, 20193(mod4)2019 \equiv 3 \pmod{4} 20200(mod4)2020 \equiv 0 \pmod{4}, 20211(mod4)2021 \equiv 1 \pmod{4}, 20222(mod4)2022 \equiv 2 \pmod{4}

Now we calculate each term modulo 5: 2014201442014(1)20141(mod5)2014^{2014} \equiv 4^{2014} \equiv (-1)^{2014} \equiv 1 \pmod{5} 20152015020150(mod5)2015^{2015} \equiv 0^{2015} \equiv 0 \pmod{5} 20162016120161(mod5)2016^{2016} \equiv 1^{2016} \equiv 1 \pmod{5} 20172017220172201621(24)5042150422(mod5)2017^{2017} \equiv 2^{2017} \equiv 2^{2016} \cdot 2^1 \equiv (2^4)^{504} \cdot 2 \equiv 1^{504} \cdot 2 \equiv 2 \pmod{5} 20182018320183201632(34)5049150494(mod5)2018^{2018} \equiv 3^{2018} \equiv 3^{2016} \cdot 3^2 \equiv (3^4)^{504} \cdot 9 \equiv 1^{504} \cdot 9 \equiv 4 \pmod{5} 2019201942019(1)201914(mod5)2019^{2019} \equiv 4^{2019} \equiv (-1)^{2019} \equiv -1 \equiv 4 \pmod{5} 20202020020200(mod5)2020^{2020} \equiv 0^{2020} \equiv 0 \pmod{5} 20212021120211(mod5)2021^{2021} \equiv 1^{2021} \equiv 1 \pmod{5} 20222022220222202022(24)5054150544(mod5)2022^{2022} \equiv 2^{2022} \equiv 2^{2020} \cdot 2^2 \equiv (2^4)^{505} \cdot 4 \equiv 1^{505} \cdot 4 \equiv 4 \pmod{5}

The determinant modulo 5 is:

1012440141(4441)0()+1(2140)(mod5)\begin{vmatrix} 1 & 0 & 1 \\ 2 & 4 & 4 \\ 0 & 1 & 4 \end{vmatrix} \equiv 1(4 \cdot 4 - 4 \cdot 1) - 0(\dots) + 1(2 \cdot 1 - 4 \cdot 0) \pmod{5} 1(164)+1(2)(mod5)\equiv 1(16 - 4) + 1(2) \pmod{5} 12+2(mod5)\equiv 12 + 2 \pmod{5} 14(mod5)\equiv 14 \pmod{5} 4(mod5)\equiv 4 \pmod{5}

Thus, k=4k=4.