Solveeit Logo

Question

Question: If a straight line through the point P (3, 5) makes an angle $\frac{\pi}{6}$ with +ve x-axis and mee...

If a straight line through the point P (3, 5) makes an angle π6\frac{\pi}{6} with +ve x-axis and meets the lines 2x + y + 5 = 0 and 3x - 2y + 7 = 0 at Q and R then PQPR\frac{PQ}{PR} =

Answer

8(2073)33\frac{8(20 - 7\sqrt{3})}{33}

Explanation

Solution

To find the ratio PQPR\frac{PQ}{PR}, we will use the parametric form of a straight line.

  1. Equation of the line passing through P(3, 5):

The line passes through point P(x1,y1)=(3,5)P(x_1, y_1) = (3, 5) and makes an angle θ=π6\theta = \frac{\pi}{6} with the positive x-axis. The parametric equation of the line is given by:

xx1cosθ=yy1sinθ=r\frac{x - x_1}{\cos\theta} = \frac{y - y_1}{\sin\theta} = r

Here, cosθ=cos(π6)=32\cos\theta = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} and sinθ=sin(π6)=12\sin\theta = \sin(\frac{\pi}{6}) = \frac{1}{2}. Substituting the values:

x332=y512=r\frac{x - 3}{\frac{\sqrt{3}}{2}} = \frac{y - 5}{\frac{1}{2}} = r

From this, we can express xx and yy in terms of rr:

x=3+r32x = 3 + r\frac{\sqrt{3}}{2} y=5+r12y = 5 + r\frac{1}{2}

Here, rr represents the directed distance from point P to any point (x,y)(x, y) on the line. PQ=rQPQ = |r_Q| and PR=rRPR = |r_R|.

  1. Finding the distance PQ (rQr_Q):

The line meets the first line 2x+y+5=02x + y + 5 = 0 at Q. Substitute the parametric expressions for xx and yy into the equation of the first line:

2(3+rQ32)+(5+rQ12)+5=02\left(3 + r_Q\frac{\sqrt{3}}{2}\right) + \left(5 + r_Q\frac{1}{2}\right) + 5 = 0 6+rQ3+5+rQ12+5=06 + r_Q\sqrt{3} + 5 + r_Q\frac{1}{2} + 5 = 0 16+rQ(3+12)=016 + r_Q\left(\sqrt{3} + \frac{1}{2}\right) = 0 16+rQ(23+12)=016 + r_Q\left(\frac{2\sqrt{3} + 1}{2}\right) = 0 rQ=16×223+1=3223+1r_Q = -\frac{16 \times 2}{2\sqrt{3} + 1} = -\frac{32}{2\sqrt{3} + 1}

So, PQ=rQ=3223+1PQ = |r_Q| = \frac{32}{2\sqrt{3} + 1}.

  1. Finding the distance PR (rRr_R):

The line meets the second line 3x2y+7=03x - 2y + 7 = 0 at R. Substitute the parametric expressions for xx and yy into the equation of the second line:

3(3+rR32)2(5+rR12)+7=03\left(3 + r_R\frac{\sqrt{3}}{2}\right) - 2\left(5 + r_R\frac{1}{2}\right) + 7 = 0 9+rR33210rR+7=09 + r_R\frac{3\sqrt{3}}{2} - 10 - r_R + 7 = 0 6+rR(3321)=06 + r_R\left(\frac{3\sqrt{3}}{2} - 1\right) = 0 6+rR(3322)=06 + r_R\left(\frac{3\sqrt{3} - 2}{2}\right) = 0 rR=6×2332=12332r_R = -\frac{6 \times 2}{3\sqrt{3} - 2} = -\frac{12}{3\sqrt{3} - 2}

So, PR=rR=12332PR = |r_R| = \frac{12}{3\sqrt{3} - 2}.

  1. Calculating the ratio PQPR\frac{PQ}{PR}:

PQPR=3223+112332\frac{PQ}{PR} = \frac{\frac{32}{2\sqrt{3} + 1}}{\frac{12}{3\sqrt{3} - 2}} PQPR=3223+1×33212\frac{PQ}{PR} = \frac{32}{2\sqrt{3} + 1} \times \frac{3\sqrt{3} - 2}{12}

Divide 32 by 4 and 12 by 4:

PQPR=823+1×3323\frac{PQ}{PR} = \frac{8}{2\sqrt{3} + 1} \times \frac{3\sqrt{3} - 2}{3} PQPR=8(332)3(23+1)\frac{PQ}{PR} = \frac{8(3\sqrt{3} - 2)}{3(2\sqrt{3} + 1)}

To rationalize the denominator, multiply the numerator and denominator by the conjugate of (23+1)(2\sqrt{3} + 1), which is (231)(2\sqrt{3} - 1):

PQPR=8(332)(231)3(23+1)(231)\frac{PQ}{PR} = \frac{8(3\sqrt{3} - 2)(2\sqrt{3} - 1)}{3(2\sqrt{3} + 1)(2\sqrt{3} - 1)}

Numerator: 8[(33)(23)(33)(1)(2)(23)+(2)(1)]8[(3\sqrt{3})(2\sqrt{3}) - (3\sqrt{3})(1) - (2)(2\sqrt{3}) + (-2)(-1)] =8[183343+2]= 8[18 - 3\sqrt{3} - 4\sqrt{3} + 2] =8[2073]= 8[20 - 7\sqrt{3}]

Denominator: 3[(23)212]3[(2\sqrt{3})^2 - 1^2] =3[4×31]= 3[4 \times 3 - 1] =3[121]= 3[12 - 1] =3[11]= 3[11] =33= 33

Therefore, PQPR=8(2073)33\frac{PQ}{PR} = \frac{8(20 - 7\sqrt{3})}{33}

Explanation of the solution:

  1. Use the parametric form of a straight line xx1cosθ=yy1sinθ=r\frac{x - x_1}{\cos\theta} = \frac{y - y_1}{\sin\theta} = r, where (x1,y1)=(3,5)(x_1, y_1) = (3, 5) and θ=π6\theta = \frac{\pi}{6}.
  2. Substitute x=3+r32x = 3 + r\frac{\sqrt{3}}{2} and y=5+r12y = 5 + r\frac{1}{2} into the equation of the first line (2x+y+5=02x + y + 5 = 0) to find rQr_Q.
  3. Substitute x=3+r32x = 3 + r\frac{\sqrt{3}}{2} and y=5+r12y = 5 + r\frac{1}{2} into the equation of the second line (3x2y+7=03x - 2y + 7 = 0) to find rRr_R.
  4. Calculate the ratio rQrR\frac{|r_Q|}{|r_R|} and simplify by rationalizing the denominator.