Solveeit Logo

Question

Question: If $x, y, z$ are non-zero real numbers and $\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1...

If x,y,zx, y, z are non-zero real numbers and 1+x111+y1+2y11+z1+z1+3z=0\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix} = 0, then (1x+1y+1z)-(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) is equal to ____.

Answer

3

Explanation

Solution

Apply column operations C1C1C2C_1 \to C_1 - C_2 and C2C2C3C_2 \to C_2 - C_3 to the determinant. 1+x111+y1+2y11+z1+z1+3z=x01y2y102z1+3z\begin{vmatrix} 1+x & 1 & 1 \\ 1+y & 1+2y & 1 \\ 1+z & 1+z & 1+3z \end{vmatrix} = \begin{vmatrix} x & 0 & 1 \\ -y & 2y & 1 \\ 0 & -2z & 1+3z \end{vmatrix} Expand along the first row: x2y12z1+3z0+1y2y02z=0x \begin{vmatrix} 2y & 1 \\ -2z & 1+3z \end{vmatrix} - 0 + 1 \begin{vmatrix} -y & 2y \\ 0 & -2z \end{vmatrix} = 0 x(2y(1+3z)(1)(2z))+(y)(2z)(2y)(0)=0x(2y(1+3z) - (1)(-2z)) + (-y)(-2z) - (2y)(0) = 0 x(2y+6yz+2z)+2yz=0x(2y + 6yz + 2z) + 2yz = 0 2xy+6xyz+2xz+2yz=02xy + 6xyz + 2xz + 2yz = 0 Divide by 2xyz2xyz (since x,y,z0x, y, z \neq 0): 1z+3+1y+1x=0\frac{1}{z} + 3 + \frac{1}{y} + \frac{1}{x} = 0 1x+1y+1z=3\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -3 Therefore, (1x+1y+1z)=(3)=3-(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) = -(-3) = 3.